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Abstract

Many institutional investors hold portfolios with few holdings. This makes it

challenging to precisely estimate their individual demand. In this paper, I seek to

make two contributions. First, I propose a data augmentation technique based on

the generation of data-driven and economically interpretable synthetic assets. I

show that this data augmentation acts as an adaptive nonlinear shrinkage which

automatically adjusts the shape of the penalty to the cost of overfitting faced

by the nonlinear demand function estimator. The resulting estimation technique

leads to substantial improvement in cross-out-of-sample R2 for estimation of both

low-dimensional and high-dimensional demand functions. Second, I use the pro-

posed methodology to construct a measure of investor differentiation. Using the

Morningstar mutual fund ratings reform in 2002 as a shock to competition for

alpha, I show that mutual funds escape the increased competition intensity by

differentiating from their competitors.
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1 Introduction

Many institutional investors hold portfolios with few holdings. Due to the scarcity of

portfolio holdings data,1 it is challenging to obtain precise estimates of the individual

demand of institutional investors as a multivariate function of the set of stock character-

istics (Koijen and Yogo (2019), Koijen et al. (2023)).2 This issue is further exacerbated

if one’s goal is to estimate complex, high-dimensional demand functions in line with the

modern asset pricing literature.3 This limits the pursuit of research questions requir-

ing highly flexible measurement of institutional investors’ portfolio decisions, such as

studies on differentiation and innovation in terms of investment strategies.

In this paper, I seek to make two contributions. First, to address the scarcity

of holdings data, I propose a data augmentation technique based on the generation of

data-driven and economically interpretable synthetic assets. I show that augmentation

of institutional investor holdings with the proposed synthetic assets acts as an adaptive

shrinkage estimator. The rate of shrinkage imposed on the coefficients by synthetic

assets adapts to the functional form of the demand function estimator, leading to more

efficient shrinkage. In the case of nonlinear GMM estimation in Koijen and Yogo (2019)

and Koijen et al. (2023), who model asset demand as an exponential function of stock

characteristics, the coefficients are shrunk according to an exponential penalty on their

deviation from a shrinkage target.

1For instance, the median number of holdings available for an econometrician to study an individual
active equity mutual fund is just around 70 holdings per quarter (in a merged Thomson Reuters s12-
CRSP Mutual Fund dataset). For 13F institutions (Thomson Reuters s34), the median number of
holdings is around 100 holdings per quarter. For descriptive statistics on the number of holdings in
active mutual funds and 13F institutions, see Tables A.1 and A.2, respectively. The data scarcity is
even more severe in bond holdings data: see Nenova (2024), for example.

2Koijen and Yogo (2019) note: “We estimate the coefficients by institution whenever there are
more than 1,000 strictly positive holdings in the cross section. For institutions with fewer than 1,000
holdings, we pool them with similar institutions in order to estimate their coefficients... While the
cutoff of 1,000 is arbitrary, a lower cutoff of 500 causes convergence problems for our estimator in some
cases. We set the total number of groups at each date to target 2,000 strictly positive holdings ...
per group.” Also, Koijen and Yogo (2019) model investors’ demand as a function of a small set of
asset characteristics: “Our specification is based on a parsimonious and relevant set of characteristics
for explaining expected returns and factor loadings... We are concerned about collinearity between
characteristics and overfitting if we consider a larger model with more characteristics.”

3See, for example, Kelly et al. (2024), Kelly et al. (2022), Didisheim et al. (2023), Kozak et al.
(2020), Gu et al. (2020), Martin and Nagel (2022) for high-dimensionality in asset pricing and see
Kaniel et al. (2023), Gabaix et al. (2024) for examples in asset management literature. For adoption
of AI, machine learning, and alternative data by modern asset managers, see Abis (2020), Bonelli and
Foucault (2023), Dugast and Foucault (2023), Bonelli (2022).
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The intuition of the mechanism through which the data augmentation with syn-

thetic assets acts as a shrinkage is depicted in Figure 2. When the model of interest

is very complex relative to the number of available observations, the model overfits the

training data, which leads to poor generalization on new, unseen data. The cornerstone

of the data augmentation as a shrinkage technique is to initially fit a simplified, robust

to overfitting model, and then generate synthetic data points as predictions obtained

from this simplified model. Then, the complex model of interest is estimated on the

augmented dataset consisting of both original and synthetic data points, which shrinks

the complex model towards the predictions made by the simple model, reducing the

complex model’s variance and mitigating overfitting.

In the context of estimating asset demand functions, I propose the following

data augmentation algorithm. First, I estimate the log-linearized specification of the

demand function of a given institutional investor i at a given point in time t using a

penalized linear estimator that is robust to overfitting (such as linear ridge regression).

Second, I generate synthetic assets whose characteristics provide a canonical basis for

the space of characteristics used in the demand function estimation. Then, the synthetic

demand of investor i at time t for each characteristic-basis synthetic asset is generated

as out-of-sample predictions of the simplified model obtained in the first step. In the

third and final step, for each separate investor i at a given time t, the augmented

dataset – which comprises of both original and synthetic assets – is used to estimate the

demand function with nonlinear GMM of Koijen and Yogo (2019). This last step can

be performed without the pooling of holdings across investors, which would have been

required in the nonlinear GMM estimation approach of Koijen and Yogo (2019), Koijen

et al. (2023). The composition of the augmented dataset is illustrated in Figure 1,

Panel A.

The importance of my methodological contribution is twofold. First, my ap-

proach provides a better explanation of the asset demand of institutional investors. As

illustrated in Panel B of Figure 1, the data augmentation approximately doubles the

mean cross-out-of-sample R2 for estimating standard low-dimensional demand functions

compared to the state-of-the-art method of Koijen et al. (2023). When the demand

function is extended to the high-dimensional set of stock characteristics comprising
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characteristics from factor zoo and industry dummies, the mean cross-out-of-sample R2

increases by a factor of about 2.5. Second, from an economic standpoint, the capabil-

ity to estimate high-dimensional asset demand functions individually for each investor

is central to providing a demand-function analogue to measures of investor differenti-

ation used in the literature on industrial organization of asset management. In this

way, I provide a link between the literature on demand-based asset pricing (Koijen and

Yogo (2019), Koijen et al. (2023)) and the literature on industrial organization of asset

management.

Unlike recent studies addressing the issue of missing data in finance panels (no-

tably, Giglio et al. (2021), Freyberger et al. (2024), Bryzgalova et al. (2024), Kaniel

et al. (2023)), I propose a data augmentation technique that serves as a regularization

method, whereby synthetic assets effectively prevent overfitting and issues arising from

multicollinearity. Imputation of missing values is fundamentally distinct from generat-

ing fully-synthetic data points for regularization. In the former, an econometrician uses

conditional mean expectations of regressors with missing values given non-missing val-

ues of other regressors. In other words, imputation of some missing regressors for a given

observation j requires to observe at least some regressors for the exact same observation

j. In my approach of data augmentation with characteristic-basis synthetic assets, the

values of regressors are fully synthetic and are selected flexibly using cross-validation

allowing one to create additional data points even if all regressors are missing.

In my second contribution, I propose a multivariate, well-suited for modern high-

dimensional settings measure of similarity between the investment strategies pursued

by institutional investors. The proposed measure – which I refer to as asset demand

function similarity (ADFS) – is based on the cosine similarity between the vectors of

the estimated asset demand function loadings of investors. Unlike prospectus-based

measures, my measure captures which investment strategies are pursued by mutual

funds, rather than how mutual funds advertise themselves. Further, unlike univariate

portfolio-weighted characteristic-based measures, my measure captures the correlations

among the asset characteristics. Last but not least, since the measure is based on

demand functions in a structural model, it can directly map the differentiation and

innovation of institutional investors into asset prices through the approach of Koijen
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Panel A: Data augmentation of investor’s holdings

Panel B: Performance of demand function estimators across fund-years

Figure 1: Data augmentation: main result

Note: Panel A illustrates the data augmentation approach. Suppose that for a given investor i at
time t we observe n original assets with characteristics xi ∈ Rp×1, i ∈ {1, , ..., n} and investor i’s time-t
demand for those assets is δi, i ∈ {1, , ..., n} (the subscript t is omitted for brevity). Then, the original
observations of portfolio holdings are augmented by adding nS synthetic assets with characteristics
ψi ∈ Rp×1, i ∈ {1, , ..., nS}. The synthetic demand for synthetic assets is generated as a prediction
from simplified model. Finally, the model of interest is estimated using both n original and nS synthetic
assets. Panel B shows the distribution of cross-out-of-sample R2 across fund-years. Cross-out-of-sample
R2 measures how well 1/5 of fund i’s holdings at time t are explained by a demand function estimated
(including hyper-parameter selection) on the remaining 4/5. To construct R2, this process is repeated
across all 5 folds. Vertical dashed (dotted) lines show the mean (median) of the distribution of cross-
out-of-sample R2 for each estimation approach. Label “Ridge shrinkage towards group” corresponds to
the approach proposed in Koijen et al. (2023). “Data augmentation” refers to the estimation of asset
demand functions on the augmented dataset using nonlinear Generalized Method of Moments (GMM)
of Koijen et al. (2023) without shrinkage towards the group priors. For low-dimensional demand
functions (labelled as “Low-Dim.”), the set of asset characteristics comprise of the superset of baseline
characteristics used in Koijen and Yogo (2019), Koijen et al. (2023), resulting in p = 8 characteristics.
For high-dimensional demand functions (labelled as “High-Dim.”), the baseline set of characteristics is
extended by 77 stock characteristics from “factor zoo” and 85 SIC 2-digit industry dummies, resulting
in a total of p = 170 characteristics. The figure shows only the low-dimensional version of the nonlinear
GMM with shrinkage towards group target since for high-dimensional demand functions, the estimator
systematically does not converge. Following Koijen et al. (2023), the demand function is estimated
annually for a given fund. The sample consists of active equity mutual funds in the U.S. between 1992
and 2022. To mitigate the impact of outliers on the mean, I winsorize the distribution of R2 at 2.5%.
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and Yogo (2019), Koijen et al. (2023).

Using the proposed measure, I show that mutual funds escape the increased

competition through the differentiation from competing funds in the same style. To

address the endogeneity of competition and differentiation, I use the Morningstar mutual

fund ratings reform in 2002 – introduced by Ben-David et al. (2020) – as a plausibly

exogenous shock to the style-level competition for alpha. Before June 2002, Morningstar

used to assign ratings based on the ranking of all U.S. equity mutual funds without

taking into account the style of each specific fund. In June 2002, Morningstar changed

drastically their approach by starting to assign ratings based on within-style rankings of

funds. In this way, funds that belonged to poor-performing styles obtained, on average, a

positive shock to their Morningstar rating, while funds in well-performing styles received,

on average, a negative shock to their rating (Ben-David et al. (2020)). In the 2SLS

estimation of the impact of increased fund flows into styles on the similarity of mutual

funds’ asset demand functions, the relevance condition is satisfied since Morningstar

ratings attract flows, as shown by a strong first stage in my analysis. The exclusion

restriction relies on the identifying assumption that the only channel through which the

Morningstar mutual fund ratings reform affected mutual funds’ portfolio decisions is

through style-level flows.

My finding provides plausibly causal evidence of a new channel of mutual fund dif-

ferentiation in the space of investment strategies, complementing recent studies on mu-

tual fund differentiation and innovation.4 Using textual analysis of mutual fund prospec-

tuses, Kostovetsky and Warner (2020) show that small and young fund families offer

more unique mutual funds, and that more unique funds have lower flow-performance

sensitivity. Based on a measure of uniqueness of mutual fund prospectuses, Bonelli et al.

(2021) show that after receiving a negative signal about their quality, poorly perform-

ing mutual funds differentiate on non-performance dimension by offering more unique

products catering to niche clientele. Abis and Lines (2024) find that capital flows to mu-

tual funds respond negatively when mutual funds deviate from their prospectus-based

strategy peer groups.

4See Kostovetsky and Warner (2020), Abis and Lines (2024), Bonelli et al. (2021), Lettau et al.
(2018).
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In my paper, I provide evidence that after the increase in competition for alpha

due to the increased capital flows to competitors, mutual funds differentiate from their

style-based peers in terms of investment strategies, measured as the cosine similarity

between their asset demand functions. The finding is robust to controlling for the

mutual fund performance and the performance of the funds’ peers, suggesting that my

finding is not driven by the quality of the fund or its competitors, but rather by the

increased difficulty of the search for alpha in the presence of larger diseconomies of

scale at the style level. Using partial cosine similarity between the demand function

loadings on a specific subset of stock characteristics, I find that active mutual funds

mostly differentiate across the stock characteristics representing investment, accruals,

and profitability, but not through the differentiated industry exposures.

My results suggest that policies aimed at increasing capital flows into the mutual

fund sector (such as decreasing the costs associated with investing in mutual funds or

increasing tax incentives) can lead to more innovation by mutual funds. Given the

finding that mutual funds dynamically differentiate across investment strategies other

than size and value, my paper also provides further evidence in support of customized-

peer mutual fund performance evaluation (Hoberg et al. (2018), Abis and Lines (2024))

and fund-specific estimation of the diseconomies of scale (Berk and Green (2004), Barras

et al. (2022)).

1.1 Related Literature

My paper contributes to three strands of literatures: literature on the estimation of

investor demand functions, literature on industrial organization of asset management

industry, and the literature that employs machine learning to study complex, high-

dimensional phenomena in financial economics.

Estimation of investor demand functions. Modern empirical asset pricing

literature is increasingly using the demand-based asset pricing approach of Koijen and

Yogo (2019), Koijen et al. (2023) to study the asset pricing implications of the portfolio

choices of institutional investors. Examples of such studies include Koijen and Yogo

(2024), Koijen et al. (2021), van der Beck (2022), van der Beck (2021), Haddad et al.

(2021), Huebner (2023), Bretscher et al. (2022), Plazzi et al. (2023), Noh et al. (2020).
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(a) Panel A (b) Panel B

(c) Panel C (d) Panel D

Figure 2: Data augmentation as a shrinkage method: Stylized illustration
Note: Panel A illustrates how highly-flexible and complex function y = f(x) (green solid curve) overfits
the in-sample data (black dots), and thus, generalizes poorly to the out-of-sample data (denoted by
brown crosses). In Panel B, a simplified and robust to overfitting function y = g(x) (solid red line)
is fitted to the in-sample data only. Then, in Panel C, the highly-flexible, complex function f() (blue
solid line) is fitted on the augmented dataset that contains both the original in-sample data (black
dots) and synthetic data points (red dots) generated as a prediction from the simplified model. Panel
D shows how the complex function f() fitted with data augmentation provides a better description of
the underlying true data generating process and generalizes well on the previously unseen data.

I contribute to this literature by proposing a data augmentation-based approach to the

estimation of asset demand functions which extends Koijen and Yogo (2019), Koijen

et al. (2023) on two key aspects simultaneously: 1) estimation of the time-varying

nonlinear demand functions individually for each institutional investor without relying

on pooling of institutional investors together or shrinkage towards first-step estimates

obtained on pooled sample; 2) estimation of high-dimensional demand functions where

the number of stock characteristics potentially relevant for investors’ demand can be

similar to or even exceed the number of original observations of stock holdings. While
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Haddad et al. (2021) and Huebner (2023) resort to log-linearization of (low-dimensional)

structural equation to obtain investor-specific estimates – which restricts the set of assets

used in estimation to those with strictly positive portfolio weights – my approach of

data augmentation allows for the estimation nonlinear GMM proposed by Koijen and

Yogo (2019), Koijen et al. (2023), which permits zero-weight holdings in estimation.

Without zero-weight holdings, the demand function only describes the intensive margin

of investor’s demand: conditional on choosing to hold asset j, how much of the asset is

held? With nonlinear GMM approach of Koijen and Yogo (2019), Koijen et al. (2023),

the extensive margin (which assets are held) is incorporated into the demand function

estimation as well. While I employ data augmentation approach in the specific case

of Koijen and Yogo (2019), Koijen et al. (2023), the augmentation of holdings with

synthetic assets proposed in my paper can also be used in future work that applies

extremely flexible machine learning techniques to the estimation of investors’ demand,

for example to learn asset embeddings or investor embeddings in Gabaix et al. (2024).

Competition and differentiation of institutional investors. There has

been a recent and rapid growth in the literature studying the industrial organization

of asset management, and specifically, the questions regarding competition, differentia-

tion, and innovation among asset managers. Studies in this literature introduced various

measures of similarity between the investment vehicles to capture different dimensions

of competition and differentiation. Wahal and Wang (2011) use overlap in portfolio

holdings as a measure of similarity between the incumbents and new entrants in mutual

funds industry. Using return-based factor exposures of funds, Li and Qiu (2014) show

that mutual funds with more extreme factor exposures charge higher fees. Kostovetsky

and Warner (2020) propose a measure of mutual fund uniqueness based on the tex-

tual analysis of mutual fund prospectuses. Abis and Lines (2024) suggest to use the

k-means clustering algorithm on the corpora of mutual fund prospectuses to construct

prospectus-based strategy peer groups (SPGs). Hoberg et al. (2018) propose to measure

the distance between the pair of mutual funds as the distance between the vectors of

investment-weighted stock characteristics of each fund. Although their approach does

capture the actual investment strategy of funds – rather than what funds advertise

in their prospectuses – the measure based on portfolio-weighted stock characteristics

is univariate by construction and does not take into account the correlation between

8



the stock characteristics.5 I contribute to the literature by proposing a multivariate,

suitable for modern high-dimensional settings measure that captures which investment

strategies in the space of observable asset characteristics are actually pursued by mu-

tual funds rather than those advertised in prospectuses. Inspired by the success of

transformer-based BERT models in natural language processing, Gabaix et al. (2024)

propose a machine learning method AssetBERT to learn latent vector representations

of assets, called asset embeddings, and analogously defined InvestorBERT to obtain

investor embeddings. The authors further suggest that investor embeddings can be

used to measure the similarity of investors in the latent space of embeddings. There

are two key advantages of constructing similarity measures based on the investor-level

high-dimensional version of Koijen et al. (2023) compared to investor embeddings pro-

posed in Gabaix et al. (2024). First, the similarity of demand function loadings directly

captures the investment strategy pursued by an investor in the space of interpretable

stock characteristics, whereas investor embeddings are latent by construction. Second,

measuring similarity in terms of high-dimensional version of Koijen et al. (2023) de-

mand functions allows one to explore which observable types of stock characteristics

(e.g., measures of profitability or industry dummies) institutional investors differentiate

along.6 For example, using partial cosine similarity based on the demand function load-

ings on characteristics from the profitability theme (as defined in Jensen et al. (2023)),

one can estimate the extent to which investor differentiation is driven by differences in

exposure to stock characteristics measuring profitability.

Machine learning and high-dimensionality in finance. A growing litera-

ture in finance adapts machine learning tools to answer questions in financial economics.

Machine learning has been applied to various settings in empirical asset pricing: Cong

et al. (2021), Kelly et al. (2024), Kelly et al. (2022), Didisheim et al. (2023), Kozak

5In a refinement of the baseline method, Hoberg et al. (2018) propose to sequentially orthogonalize
stock characteristics with respect to some pre-defined by econometrician rule before constructing fund-
level characteristics, yet this approach still does not allow for simultaneous multivariate estimation and
is likely to be sensitive to the pre-specified orthogonalization sequence. Further, the noise in sequential
orthogonalization accumulates after each orthogonalization, raising concerns about very noisy residual
characteristics when the number of stock characteristics grows large.

6Under appropriate exclusion restrictions, latent asset characteristics – such as asset embeddings
obtained using AssetBERT in Gabaix et al. (2024) – can also be included in the demand function
estimation, providing a way to jointly estimate demand function loadings on both observable and
latent asset characteristics in the estimation of a high-dimensional demand system. This would allow
an empiricist to include additional information about asset types that are not incorporated in the
observed asset characteristics.
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et al. (2020), Gu et al. (2020), and Martin and Nagel (2022); asset management: Kaniel

et al. (2023) Gabaix et al. (2024); and corporate finance: Hommel et al. (2021). To

the best of my knowledge, my paper is the first to propose data augmentation as a

shrinkage method to regularize the high-dimensional estimation problem and to address

the scarcity of data in asset pricing and asset management panel data.

Data augmentation in computer science and statistics. The data augmen-

tation approach to regularization is commonly used in computer science. In the seminal

paper on deep learning for image classification, Krizhevsky et al. (2012) augment the

original dataset of 1.2 million images by generating label-preserving transformations of

the original images to train the neural network architecture with 60 million parameters.

The label-preserving transformations – such as horizontal reflection of the image, color

distortion or extracting random patches from the original images – do not alter the label

of the image (e.g., whether it is a dog or a flower) while creating additional training data

that is synthesized according to a pre-determined rule.7 The most closely related to my

data augmentation approach are Li and Liu (2022) and Huang et al. (2020). Li and Liu

(2022) propose an adaptive noisy data augmentation approach that implements well-

known penalized estimators such as Lasso, Elastic Net, SCAD by adding observations

consisting of noise drawn from a distribution specific to the chosen type of penalized

estimator. In Huang et al. (2020), the authors generate noisy synthetic data from the

predictive distribution of a simpler model to regularize a high-dimensional “working

model”. The data augmentation approach in my paper follows a similar logic to Huang

et al. (2020) in that the more complicated demand function estimator is disciplined

by the output obtained from a simpler model. However, unlike Huang et al. (2020)

who rely on the addition of noisy data and subsequent convergence of this noise to a

penalty, my data augmentation approach is deterministic since the synthetic assets are

constructed as a basis spanning the space of asset characteristics. This provides two

advantages. First, the synthetic dataset is parsimonious in that it does not require a

large number of synthesized observations to obtain precise regularization, which might

be very computationally costly. Second, the deterministic nature of the synthetic as-

7The label-preserving transformations of the original data are clearly interdependent with original
data. However, Krizhevsky et al. (2012) note that the benefit from such data augmentation is substan-
tial “...The resulting training examples are, of course, highly interdependent. Without this scheme, our
network suffers from substantial overfitting, which would have forced us to use much smaller networks.”
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sets ensures that the estimates of demand function loadings are not dependent on the

particular sequence of randomly generated noise, which fosters replicability of results

across researchers. My paper is also related to the computer science literature on model

collapse due to an excess of synthetic data in training datasets (see, e.g. Dohmatob

et al. (2024)). Papers in this literature focus on settings where the distinction between

original and synthetic data is practically impossible,8 and show that an overabundance

of synthetic data leads to the deterioration of the quality of machine learning models.

Unlike this literature, in my data augmentation approach, the identity of synthetic data

is known by construction since it is generated by the method.

The rest of this paper is organized as follows. Section 2 describes the proposed

data augmentation methodology and its application to asset demand system estimation.

In section 3, the proposed methodology is tested on simulated investor holdings. Section

4 provides a description of the data. Section 5 presents the cross-out-of-sample valida-

tion of the method. Section 6 outlines the identification strategy for the application

of the high-dimensional demand functions to study competition-induced differentiation

and presents the empirical results. Section 7 shows robustness checks and section 8

concludes.

2 Methodology

2.1 Estimation of Asset Demand Functions

Suppose that we observe the portfolio of stocks held by institutional investor i at some

time t. Let wi,t,j be the weight in asset j ∈ {1, ..., ni,t} of investor i’s portfolio at time

t, where ni,t is the number of stocks in investor i’s investment universe. I follow Koijen

and Yogo (2019), Koijen et al. (2023) in defining the investment universe as the set

of stocks that investor i has held over the past 12 quarters. As in Koijen and Yogo

(2019), Koijen et al. (2023), I normalize the portfolio weights of wi,t,j by the weight in

the outside asset wi,t,0. The outside asset is comprised of small stocks and stocks with

missing characteristics from main specifications in Koijen and Yogo (2019), Koijen et al.

8For example, it is extremely challenging to identify whether a given chunk of text was written by
a human or by a large language model (LLM) such as ChatGPT.
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(2023).9

Then, the normalized demand δi,t,j :=
wi,t,j

wi,t,0
is modelled as an exponential function

of stock characteristics:

δi,t,j =
wi,t,j

wi,t,0

= exp
(
γi,t + θi,tmej,t + βT

i,txj,t
)
ϵi,t,j (1)

where γi,t is the fund-time-specific intercept, mej,t is the log market equity of stock

j at time t, and xj,t ∈ Rp×1 is a vector of stock characteristics other than market

equity. Coefficients θi,t ∈ R1×1, βi,t ∈ Rp×1 correspond to the loadings of investor i’s

demand function at time t on log market equity me and set of stock characteristics x,

respectively. Importantly, the coefficients are specific to fund i and time t. The equation

(1) is estimated for each fund-quarter separately.10

From the econometric standpoint, the key distinction between mej,t and xj,t in

Koijen and Yogo (2019) framework is that xj,t is assumed to be exogenous, while the

endogeneity of mej,t is addressed via the instrumental variable approach. Specifically,

E[mej,t (ϵi,t,j − 1)] ̸=0 (2)

E[xj,t (ϵi,t,j − 1)] =0 (3)

which states that the latent demand for asset j in (1) is correlated with the price of

that asset. To address the endogeneity, I use the instrument proposed by Koijen and

9Specifically, the outside asset is comprised of the assets that either: 1) have CRSP share codes 12,
18; 2) are below 10th CRSP percentile in terms of market equity; 3) have missing share code, return,
market equity; 3) have missing value for at least one of the characteristics used in the main specifications
of Koijen and Yogo (2019), Koijen et al. (2023) (taking a superset of the sets of characteristics used in
both studies, these characteristics are: book equity, market beta, foreign sales, operating profitability,
sales-to-book ratio, dividend-to-book ratio, asset growth, lerner index); 4) have missing SIC 2-digit
industry code.

10In Koijen and Yogo (2019), equation (1) is estimated quarterly, while in Koijen et al. (2023), the
same equation is estimated annually (one θi, βi per year) with quarter fixed effects.
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Yogo (2019):11

meIVi,t,j = log

∑
l ̸=i

AUMl,t
1l,t,j

1 +
ni,t∑
m=1

1l,t,m

 (4)

where 1l,t,j is the indicator function which is equal to 1 if asset j is in investor l’s

investment universe at time t, and zero otherwise. From economic standpoint, meIVi,t,j is

the counterfactual market equity of asset j if the institutional investors held all assets

within their investment universe in equal weights. The identifying assumption is that

the investment universe – defined as the set of stocks held by institutional investors

over past 12 quarters – is determined by the investment mandate stemming from the

contractual arrangements between investment vehicle and its clients, and thus, it is not

related to the current latent demand of investor. For the set of investors l over which

the counterfactual market equity is computed, I follow Koijen and Yogo (2019), Koijen

et al. (2023) by using the entire set of 13F institutional investors.

As a benchmark estimator of investor demand function, I take the two-step ridge-

IV estimator proposed in Koijen et al. (2023). In the first step, the group-level estimates

θ̂g,t, β̂g,t are estimated using standard, unpenalized nonlinear GMM on the sample of

grouped investors (group-level sample) under the following moment conditions:

E
[
zj,t
(
δi,t,j exp(−γi,t − θg,tmej,t − βT

g,txj,t)− 1
)]

= 0 (5)

where δi,t,j :=
wi,t,j

wi,t,0
and zj,t =

(
meIVi,t,j xj,t

)T ∈ R(p+1)×1. Grouping institutional investors

together allows to increase the number of data points available for estimation from ni,t

to ng,t, thus mitigating the potential overfitting by inducing a bias towards the estimates

obtained at the group level in the first step (5). Koijen et al. (2023) group investors by

type (mutual funds, insurance companies) and size (AUM) so that each group has at

least 2000 (including zero holdings) observations across 4 quarters.

The second-step GMM is estimated at the individual investor level with bias

11While alternative approaches to the IV estimation of θi,t exist (see van der Beck (2021), Huebner
(2023)), I use the one proposed by Koijen and Yogo (2019) to make the results in the cross-out-of-sample
exercise more comparable.
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towards group-level estimates imposed by ridge penalty. The corresponding moment

conditions are:

E
[
xt,j

(
δ̂i,t,j exp(−γi,t − βT

i,txt,j)− 1
)]

− Λ
(
βi,t − β̂g,t

)
= 0 (6)

Importantly, in (6), Koijen et al. (2023) impose infinite shrinkage on βi,t by forcing

θ̂i,t = θ̂g,t. This infinite shrinkage is imposed by deflating δ̂i,t,j = δi,t,j/ exp(θ̂g,tmej,t),

where g is the group to which investor i belongs to. Then, since xj,t are assumed

to be exogenous, the instruments in (6) are the exogenous characteristics themselves.

Another imported detail to note is that no shrinkage is applied to the intercepts γi,t to

allow investor-specific intercepts.

2.2 Data Augmentation with Synthetic Assets

By shrinking the estimates of individual demand functions of institutional investors

towards the demand functions estimated on the grouped sample, Koijen et al. (2023)

mitigate the issues with convergence and imprecision of estimates arising in estimation

of (1).12 However, this improvement comes at the cost of biasing the demand function

estimates of individual institutional investors towards the group-level estimates.

In this paper, I seek to overcome the need of the bias towards group-level es-

timates in Koijen et al. (2023) by adapting a technique of data augmentation, which

is commonly used in modern deep learning to prevent overfit in extremely overparam-

eterized models. The cornerstone of the data augmentation is creation of synthetic

observations based on some pre-defined, transparent, and data-driven rule.

I propose a novel, economically tractable approach to data augmentation of in-

vestor holdings data that 1) is deterministic in that it doesn’t require the generation of

random noise; 2) doesn’t impose ex-ante economic model on the decision making process

by investors; 3) tractably and effectively mitigates issues arising from overfitting and

multicollinearity, even in settings where number of characteristics p is much larger than

number of original holdings n.

12In the preceding study, Koijen and Yogo (2019) estimate only the first step (5), providing only the
group-level estimates.
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2.2.1 Characteristic-basis synthetic assets

To fix ideas, denote by Xi,t ∈ Rni,t×p the matrix containing the characteristics of “origi-

nal”, observed in the actual data assets.13 Here, ni,t corresponds to the number of assets

in investor i’s investment universe at time t. Further, let δi,t ∈ Rni,t×1 be the vector of

the investor i’s demand observed at time t.

I construct the synthetic assets as loadings on a basis of the space of asset char-

acteristics:

Ψi,t := λsynthi,t · Ip ∈ Rp×p (7)

where p is the dimension of the vector of asset characteristics. Throughout the paper,

I refer to Ψi,t as characteristic-basis synthetic assets. The scalar λsynthi,t corresponds to

the loadings of synthetic assets on the basis of asset characteristics. Characteristic-basis

synthetic assets have a simple economic interpretation: k-th synthetic asset is the asset

that has a loading of λsynthi,t on k-th characteristic, and zero otherwise. In empirical ap-

plications in section 5, the hyperparameter λsynthi,t will be selected using cross-validation,

which is a common approach to selection of hyperparameters in machine learning and

statistics.

Unlike synthetic data points commonly used in the computer science and statis-

tics literature – where synthetic assets have a randomly generated component (such as

random noise) – the characteristic-basis synthetic assets are deterministic. The latter

is a useful property for applications in financial economics since the estimated via data

augmentation parameters will not depend on the sequence of randomly drawn values.

For instance, injecting randomly generated noise in the estimation of the individual

demand functions of (hypothetical) fund A and fund B might lead to variation in the

13Xi,t is investor i-specific due to the difference in ni,t across investors. Note that, however, all assets
in economy xt,j ∈ Rp×1, j = 1, ..., J are common for all investors and hence, do not have a subscript i.
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Figure 3: Data augmentation of investor’s holdings

Note: Notation x−k means that vector of asset characteristics x−k includes all characteristics except
k.

estimated demand function across researchers.14

Further, I construct the synthetic demand of investor i at time t for j-th synthetic

asset ψi,t,j ∈ Rp×1 as:

δsynthi,t,j := E[δi,t,j|xt,j = ψi,t,j] (8)

Essentially, synthetic demand is generated as the conditional expectation of in-

vestor i’s demand for synthetic assets at time t. Then, combining together (7) and (8),

14Common approach to ensure reproducibility for the same code is to set a seed for the random
number generator. However, if the code among the two researchers is different, so will be the generated
random numbers. To see that, suppose we have researcher 1 estimating demand functions for the
sequence of funds A, B, C. If researcher sets the seed, as long as the sequence of funds A, B, C
remains the same, the results well be the same. However, if the same researcher decides to estimated
demand functions for A, C, B, the results will be the same for A (since the seed is the same), but
different for C and B. Clearly, there is no fundamental reason why the output of the demand function
estimation should depend on the sequence of funds in the for loop.

16



the augmented dataset is defined as:

XA,i,t :=


Xi,t

Ψi,t

−Ψi,t

 ∈ R(ni,t+2p)×p , δA,i,t :=


δi,t

E[δi,t|X = Ψi,t]

E[δi,t|X = −Ψi,t]

 ∈ R(ni,t+2p)×1 (9)

where the p × p matrix of characteristic-basis synthetic assets Ψi,t is used twice: first,

as the positive-valued synthetic assets Ψi,t, and second, as the negative-valued synthetic

assets −Ψi,t. Intuitively, this design with dual positive-negative synthetic assets is

necessary to obtain a symmetric shrinkage effect. Below, in Lemma 2, I formally show

that the shrinkage effect is asymmetric if only positive-valued or only negative-valued

synthetic assets are used in data augmentation. Figure 3 illustrates the construction of

the augmented dataset in (9).

2.2.2 Prediction of Synthetic Demand for Synthetic Assets

From 9, in order to construct investor i’s synthetic demand at time t for synthetic

assets Ψi,t, one needs to specify the conditional expectation function E[δi,t,j|xt,j = ψi,t,j].

Given the specification of demand function in (1), one natural choice for this conditional

expectation function is:

δ̂synthi,t,j = exp

((
β̂target
i,t

)T
ψi,t,j

)
(10)

where β̂target
i,t is some prior about investor i’s time-t demand function coefficients, esti-

mated from the original dataset (Xi,t, δi,t). The issue with this specification of synthetic

demand is that one has to provide a good-quality prior estimate β̂target
i,t , and estimat-

ing (10) is challenging due to the exact same problems of overfit and multicollinearity.

Therefore, one has to reduce the complexity of (1) to obtain β̂target
i,t .

To make construction of (10) empirically feasible, I propose to reduce complexity

of (1) along two dimensions. First, instead of fitting a nonlinear GMM with iterative
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algorithm, I estimate βtarget
i,t via a more robust log-linear specification15 of (1):

log (δi,t,j) = γi,t +
(
βtarget
i,t

)T
xj,t + ηi,t,j (11)

Second, I impose a ridge penalty on the deviation of βtarget
i,t from p×1 vector of zeros. In

this way, the values of βtarget
i,t are shrunk towards zero, reducing the effective complexity

of the model.16 Then, the βtarget
i,t are estimated as:

β̂target
i,t =

(
XT

i,tXi,t + λsimple
i,t · Ip

)−1 (
XT

i,t log(δi,t)
)

(12)

where λsimple
i,t is the hyperparameter governing the strength of shrinkage of βtarget

i,t to

zero. The intercept γi,t is fitted by de-meaning log(δi,t) and Xi,t. As a special case,

when λsimple
i,t = 0, the simplified ridge becomes OLS:

β̂target
i,t =

(
XT

i,tXi,t

)−1 (
XT

i,t log(δi,t)
)
for λsimple

i,t = 0 (13)

To ensure that λsimple
i,t reflects the data generating process of investor i’s demand at

time t, the λsimple
i,t is fitted adaptively via cross-validation for each investor i-time t pair

separately.

As can be noticed from (9), the framework of holdings augmentation with syn-

thetic assets is more general than a specific choice of the synthetic demand for synthetic

assets chosen in (12). Specifically, in the paper below I refer to data augmentation

with log-linearized ridge targets in (12) as augmenting with solo synthetic assets. I also

denote by dual synthetic assets augmentation two sets of synthetic assets for which the

first set of synthetic assets is assigned synthetic demand according to the log-linearized

ridge targets, while the second set of synthetic assets is assigned the synthetic demand of

zero. The total number of synthetic assets then becomes 2p+ 2p = 4p, and the relative

strength of the penalization with synthetic assets is then chosen via cross-validation.

While augmenting with solo synthetic assets allows to shrink the final GMM model

estimates towards linear ridge targets, the second set of zero-demand synthetic assets

implements shrinkage of coefficients towards zero, further improving the robustness of

15log(δi,t,j) is a natural logarithm of δi,t,j =
wi,t,j

wi,t,0
over the subset of strictly positive portfolio weights

wi,t,j > 0.
16See Hoerl and Kennard (1970) or van Wieringen (2023) for textbook treatment.
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the model towards overfitting. As will be shown in section 5, the models with dual

synthetic assets provide the highest cross-out-of-sample performance.

2.2.3 Properties of Data Augmentation with Synthetic Assets

Having defined the data augmentation with characteristic-basis synthetic assets, I turn

to the formal description of effect of such data augmentation on the GMM estimation of

(1). This section is technical and is not essential for understanding of the key intuition

behind data augmentation. Those readers who are interested in application of the

method can skip this subsection.

For ease of exposition in this subsection, assume all regressors are exogenous, and

that true intercept in DGP of δ̂i,t,j is normalized to 1. The extensions to IV estimation

are described in the next subsection. The moment condition corresponding to the

nonlinear GMM estimation of (1) are:

E
[
zi,t,j

(
δ̂i,t,j exp(−xTi,t,jβi,t)− 1

)]
= 0 (14)

The sample counterpart of (14) on original dataset:

1

n

n∑
j=1

[
zi,t,j

(
δ̂i,t,j exp(−xTi,t,jβi,t)− 1

)]
= 0 (15)

Proposition 1 describes estimation of nonlinear GMM under moment condi-

tions (14) on the augmented dataset with synthetic assets (9) and synthetic demand for

synthetic assets (10).

Proposition 1. Augmentation of a nonlinear demand function estimator in (1) un-

der moment conditions (14) with characteristic-basis synthetic assets defined as in (9),

(10) is equivalent to the nonlinear GMM with nonlinear penalty on the deviation of

coefficients βi,t from the target βtarget
i,t :

Ê
[
zA,i,t,j

(
δ̂A,i,t,j exp(−xTA,i,t,jβi,t)− 1

)]
= 0

⇔
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1

n

n∑
j=1

[
zi,t,j

(
δ̂i,t,j exp(−xTi,t,jβi,t)− 1

)]
+ πsynth

(
λsynthi,t , βi,t − βtarget

i,t

)
= 0

with:

πsynth

(
λsynthi,t , βi,t − βtarget

i,t

)
=

1

n
· λsynthi,t

(
exp(λsynthi,t (βtarget

i,t − βi,t))− exp(λsynthi,t (βi,t − βtarget
i,t ))

)
where exp() is applied element-wise, and λsynthi,t ≥ 0 is a hyper-parameter governing the

strength of the shrinkage via synthetic assets, and the k-th moment condition-specific

penalty πsynth
k ∈ R1×1 obeys the following:

λsynthi,t = 0 ⇒ ∀k ∈ {1, ..., p}, πsynth
k

(
λsynthi,t , βk,i,t − βtarget

k,i,t

)
= 0

βk,i,t = βtarget
k,i,t ⇒ πsynth

k

(
λsynthi,t , βk,i,t − βtarget

k,i,t

)
= 0

∀βk,i,t ̸= βtarget
k,i,t , as λsynthi,t → +∞ ,

∥∥∥πsynth
k

(
λsynthi,t , βk,i,t − βtarget

k,i,t

)∥∥∥
2
→ +∞

∀λsynthi,t > 0, as |βk,i,t − βtarget
k,i,t | → +∞ ,

∥∥∥πsynth
k

(
λsynthi,t , βk,i,t − βtarget

k,i,t

)∥∥∥
2
→ +∞

Proof: see Appendix C.3.

There are two key takeaways from Proposition (1). First, GMM estimation on

the dataset augmented with synthetic assets is equivalent to the GMM estimation on

the original dataset with a cost imposed on the deviation of parameters βi,t from some

pre-specified by empiricist target. This way, GMM with data augmentation effectively

acts as a shrinkage estimator, preventing overfitting by shrinking the coefficient to a

pre-specified prior. Second, the GMM estimation on original dataset is a subcase of

GMM estimation with data augmentation when the loadings of synthetic assets on

characteristic basis goes to zero (λsynthi,t → 0). Since λsynthi,t is selected via cross-validation,

this means that the solution to the GMM with data augmentation can be arbitrarily

close to the “standard” GMM, provided that the data generating process for investor i

at time t supports selection of λsynthi,t = 0 in cross-validation.

The following two lemmas are useful to prove Proposition 1 and provide intuition

on importance of using both positive- and negative-valued synthetic assets.
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Lemma 1. The penalties induced by characteristic-basis synthetic assets have the fol-

lowing functional form:

a) for positive-valued synthetic assets:

πsynth
+

(
λsynthi,t , βi,t − βtarget

i,t

)
=
1

n
· λsynthi,t

(
exp(λsynthi,t (βtarget

i,t − βi,t))− 1p

)

b) for negative-valued synthetic assets:

πsynth
−

(
λsynthi,t , βi,t − βtarget

i,t

)
=− 1

n
· λsynthi,t

(
exp(λsynthi,t (βi,t − βtarget

i,t ))− 1p

)

c) with all synthetics assets:

πsynth

(
λsynthi,t , βi,t − βtarget

i,t

)
=

1

n
· λsynthi,t

(
exp(λsynthi,t (βtarget

i,t − βi,t))− exp(λsynthi,t (βi,t − βtarget
i,t ))

)
where 1p is p× 1 vector of ones, and exp() is applied element-wise.

Proof: see Appendix C.1.

In essence, Lemma 1 derives the shape of the penalty imposed individually by

positive-valued and negative-valued synthetic assets. Another important result from

Lemma 1 is that the shape of the penalties induced by synthetic assets adapt to the

functional specification of the moment condition of nonlinear GMM. Indeed, by com-

paring expressions for penalties provided in the lemma above to (14), one can note that

exponential functional form of the GMM’s moment condition resulted in the exponen-

tial form of the penalty on the coefficients. Figure 4 illustrates the shape of each of the

two “branches” of penalties and plots the shape of the total penalty from both types of

synthetic assets.

It is interesting to compare the shape of the total penalty induced by all synthetic

assets to the shape of ridge penalty (see Figure 4). Since the penalty imposed by

synthetic assets takes exponential form, the penalty grows much slower for the values of

βi,t close to the target βtarget
i,t compared to the values of βi,t relatively far from the target.

This adaptive shape of the penalty reflects the costs of overfitting for the exponential
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functional form of GMM in (14). If βi,t in (14) is overfitted by 0.1 close to the target,

the fitted values δ̂i,t will be less implausible than if the βi,t is overfitted by 0.1 far from

the target. At the same time, the ridge penalty on the moment condition grows at

the constant speed. As will is shown the in cross-out-of-sample validation exercise, the

adaptive shrinkage via data augmentation outperforms standard ridge penalty.

The following lemma formally shows asymmetry of the penalties induced by

positive-valued and negative-valued synthetic assets.

Lemma 2. The penalties induced by using only positive-valued or only negative-valued

characteristic-basis synthetic assets are asymmetric around the coefficient target βtarget
k,i,t ,

k ∈ {1, ..., p}. Specifically, ∀λsynthi,t > 0, for positive-valued synthetic assets:

lim
(βk,i,t−βtarget

k,i,t )→+∞

∥∥∥πsynth
+

(
λsynthi,t , βi,t − βtarget

i,t

)∥∥∥
2
=
1

n
· λsynthi,t

lim
(βk,i,t−βtarget

k,i,t )→−∞

∥∥∥πsynth
+

(
λsynthi,t , βi,t − βtarget

i,t

)∥∥∥
2
=+∞

For negative-valued synthetic assets:

lim
(βk,i,t−βtarget

k,i,t )→+∞

∥∥∥πsynth
−

(
λsynthi,t , βi,t − βtarget

i,t

)∥∥∥
2
=+∞

lim
(βk,i,t−βtarget

k,i,t )→−∞

∥∥∥πsynth
−

(
λsynthi,t , βi,t − βtarget

i,t

)∥∥∥
2
=
1

n
· λsynthi,t

where π+() denotes penalty induced by positive-valued synthetic assets, and π−() denotes

penalty corresponding to the negative-valued synthetic assets.

At the same time, with both positive- and negative-valued synthetic assets:

lim
(βk,i,t−βtarget

k,i,t )→+∞

∥∥∥πsynth (λsynthi,t , βi,t − βtarget
i,t

)∥∥∥
2
= +∞

lim
(βtarget

k,i,t −βk,i,t)→+∞

∥∥∥πsynth (λsynthi,t , βi,t − βtarget
i,t

)∥∥∥
2
= +∞

Proof: see Appendix C.2.

Lemma 2 shows the reason behind the usage of both positive- and negative-

valued synthetic assets. If only positive-valued synthetic assets Ψi,t are used for data
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Figure 4: Data augmentation as penalty on the moment condition

Note: Quadratic ridge penalty in GMM objective corresponds to the linear penalty on the GMM’s
moment conditions.

augmentation, one obtains a penalty which will apply a large cost to the negative

deviation of the coefficient from the target but only moderate cost on the positive

deviation, even as the deviation grows very large. Likewise, if only negative-valued

synthetic assets −Ψi,t are used, positive deviations from the target will be associated

with large cost, while negative deviations will remain relatively unpenalized. Figure 4

illustrates the intuition behind Lemma 2.

To see why this asymmetry is undesirable, consider augmentation with positive-

valued synthetic assets Ψi,t only. To further simply the intuition, suppose βtarget
k,i,t = 0.

Then, for a moderate value of λsynthi,t <<∞, even extremely large positive deviations of

βk,i,t are permitted by the estimator. This, in turn, permits the estimator to overfit the

data by choosing large positive coefficients. The only way to prevent the overfit via the

large positive coefficients in this case is to set a very large λsynthi,t . Now, suppose that we

use both positive-valued synthetic assets Ψi,t and negative-valued synthetic assets Ψi,t.

Then, for a given moderate λsynthi,t , both large negative and large positive coefficients

will be penalized similarly.
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2.3 Data Augmentation in the Presence of Endogenous Re-

gressors

Since the core objective of data augmentation in this paper is to facilitate the estimation

of complex demand functions in data-scarce settings, the two key challenges arise in IV

estimation with data augmentation. The first one lies in consistent estimation of the

coefficient on endogenous variable me in the presence of large-dimensional vector of

confounding variables x ∈ Rp×1. The second hurdle is the seamless integration of data

augmentation and consistent estimation of coefficient on endogenous variable: Since

augmentation with synthetic assets introduces shrinkage-like bias in the estimates, it is

important to design the estimation algorithm in such a way that the mentioned bias

does not spill over to the IV estimation. In what follows, I propose and describe the

solutions to these two challenges.

To fix ideas, consider moment condition:

E

[
zi,t,j

(
δi,t,j exp(−met,jθg,t −

p∑
k=1

xk,t,jβk,g,t)− 1

)]
= 0 (16)

Since the number of confounding variables p can be large compared to the number

of observations n used in the estimation, the GMM estimation of (16) will typically fail

due to the multicollinearity and overfit. The estimation of (16) is further aggravated by

the low precision in the first stage.

In KRY23, authors propose estimation of (16) with small number of asset char-

acteristics (p < 10) on the grouped dataset, where individual institutional investors

are pooled into groups with at least 2,000 holdings (including zero holdings). Through

grouping, KRY23 increase the number of available for estimation observations, while

also limiting the complexity of the asset demand function to be estimated.

To estimate θg,t in the settings where the number of confounding variables is

relatively large compared to the number of available observations, I employ a debiased

estimation under moment conditions that are immunized to impact of large dimension-

ality of covariates. Specifically, I estimate the coefficient on market equity θg,t under
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the following “immunized” moment condition:

Ê
[
ži,t,j

(
log(δ̌i,t,j)− m̌et,jθg,t

)]
= 0 (17)

which yields the following estimator:

θ̂g,t =
(
Ê [ži,t,jm̌et,j]

)−1

Ê
[
ži,t,j log(δ̌i,t,j)

]
(18)

where:

ži,t,j =zi,t,j − Ě [zi,t,j|xt,j] (19)

m̌et,j =met,j − Ě [met,j|xt,j] (20)

δ̌i,t,j =δi,t,j − Ě [δi,t,j|xt,j] (21)

To allow conditional expectation functions E[vi,t,j|xt,j] to be arbitrarily dense in

xt,j ∈ Rp×1, I estimate it via Partial Least Squares (PLS) using algorithm of de Jong

(1993).

3 Simulation Study

To verify the methodology developed in the previous section, I test its performance

on simulated investor holdings data. Specifically, I simulate Nsim = 256 mutual funds

whose holdings follow the data generating process (hereafter, DGP) implied by the

demand function specification (1) from Koijen and Yogo (2019), Koijen et al. (2023).

Namely, the market equity me is correlated with latent demand ϵ, while all other asset

characteristics x ∈ Rp×1 are exogenous. Each fund has n = 250 assets in its investment

universe. The dimension of exogenous characteristics p is varied across 6 versions of

the simulated institutional investor universes: p ∈ {8, 25, 50, 100, 150, 250}. The case

p = 8 corresponds to the low-dimensional case where p is relatively small compared

to the number of assets in funds’ investment universe n = 250. Versions of simulation

with large p correspond to the case with high-dimensional demand functions. Due to

the issues with multicollinearity and overfitting arising in high-dimensional estimation,

the higher p, the more challenging is the estimation. The detailed description of the
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simulation design in provided in Appendix B.

Having simulated the holdings, I compare the relative performance of the de-

mand function estimators based on data augmentation versus the two-step ridge-GMM

estimator with shrinkage towards group priors proposed in Koijen et al. (2023). The

simulation shows that in the presence of heterogeneity across investors, estimation of

demand functions using GMM with data augmentation leads to more precise estimates

of the demand function loadings β ∈ Rp×1. I measure the precision of estimation as a

mean squared error (MSE) of estimated β̂ compared to the true βtrue. Since in simulated

data, one knows βtrue, computation of this MSE is trivial. The results of simulation are

shown in Figure 5.

3.1 Design of Simulation Study

In this subsection, I describe in detail the design of simulation study. Readers who are

not interested in technical details can skip this subsection and continue with section 3.2.

3.2 Results of Simulation Study

To evaluate the performance of competing estimators, I compute the mean squared

error of estimated demand function loadings. Given β̂M obtained from estimator M ,

the mean squared error for a given dimension of the demand function p is computed

over the entire simulated universe of Nsim investors:

MSE(β̂M , p) =
1

Nsim

Nsim∑
i=1

1

p

p∑
k=1

(β̂M
k − βtrue

k )2 (22)

As alternative metric of performance, I also compute mean absolute error (mean

absolute deviation):

MAE(β̂M , p) =
1

Nsim

Nsim∑
i=1

1

p

p∑
k=1

|β̂M
k − βtrue

k | (23)

Figure 5 presents the results of simulation study. Estimation of demand func-
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Figure 5: Results of simulation study
Note: “Ridge shrinkage towards group” corresponds to the estimator proposed by Koijen et al.

(2023). “Data augmentation” is the nonlinear GMM with synthetic assets with dual synthetic assets
proposed in section 2 but without shrinkage towards group targets.

tions with data augmentation consistently outperforms the ridge-GMM estimation with

shrinkage towards group targets in terms of the estimation precision of β̂ according to

both mean squared error and mean absolute error. The intuition behind the finding is

that in the presence of heterogeneity across investors, estimating individual fund-level

demand functions with shrinkage towards group targets is likely to induce a substan-

tive bias into the estimates, leading to poor MSE despite lower variance. On the other

hand, by generating synthetic assets from a simplified demand function, one can achieve

effective regularization and mitigate overfitting without inducing the bias towards the

group. Notably, the simulation relies on the assumption that in the true data generating

process (DGP), there is significant heterogeneity across investors. In section 5, I will

show on the real mutual funds data that, indeed, relying on shrinkage towards group-

level estimates leads to substantial deterioration of the estimation quality, even when

compared to na”ive targets where priors on all demand function loadings is assumed to

be zero.
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4 Data

4.1 Holdings of Institutional Investors

In this study, I estimate demand functions for active mutual funds only.17 There are

three main reasons for this. First, for mutual funds, we observe holdings at the individual

fund level, rather than at the management company level as in 13F data. This provides

a natural laboratory to study differentiation as we not only observe what management

companies (such as Fidelity or AQR) do, but also what are the portfolio choices of

the individual funds within the fund families. Second, active mutual funds is a large

group of institutional investors who have strong incentives to deliver well-performing

strategies since mutual fund flows tend to follow funds’ past performance. Third, for

active mutual funds, I am able to exploit the Morningstar mutual fund ratings reform

in 2002 to instrument for the competition-driven increase in flows to mutual funds.

The sample used in the cross-out-of-sample analysis spans from January 1990 to

December 2022. The sample used for the empirical analysis of the effect of increased

competition on mutual fund differentiation start on January 2001 and ends on December

2007. The start of the sample is set to avoid the dot-com bubble, while the end of the

sample is set before the Global Financial Crisis. Since the Morningstar mutual fund

ratings reform was implemented on June 2002, the limits of the sample provide sufficient

pre-shock period to check for parallel trends, as well as more than 4 years of data after

the reform to study long-term effects of the changes.

Following the recommendations in Zhu (2020), I use the mutual fund holdings

data from Thomson Reuters s12 for the first part of the sample, and CRSP Mutual

Fund database for second part of the sample. The switch date for the two datasets

is set to January 2010, which is roughly the time when CRSP mutual fund holdings

data becomes high-quality. This switch allows to avoid issues with missing new funds in

Thomson Reuters dataset described in Zhu (2020). I construct an overarching mutual

fund identifier portf id based on CRSP’s crsp cl grp and Thomson Reuters’ wficn. To

seamlessly switch the holdings source for funds that exist in both CRSP and Thomson

17However, the instrument for market equity is constructed using the counterfactual portfolio weights
of entire 13F universe of institutional investors
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Reuters, I match crsp cl grp to wficn based on the MF Links map between wficn

and crsp fundno, which is later matched with crsp cl grp through the crsp cl grp-

crsp fundno map provided in CRSP Mutual Fund database’s fund summary file. Mu-

tual fund holdings from the CRSP are merged to the overarching fund identifier portf id

through crsp cl grp-crsp portno mapping, while the holdings from Thomson Reuters

s12 file are merged via the mapping between Thomson Reuter’s fundno and wficn

from MF Links.

I provide the descriptive statistics on the number of stocks held by active equity

mutual funds in Table A.1. For comparison, I tabulate the same statistics for passive

equity mutual funds in Table A.3 and 13F institutional investors in Table A.2.

4.2 Stock Characteristics

To determine the list of stock characteristics to be used in the high-dimensional demand

function specification, I start with the list of stock characteristics that comprise “factor

zoo” in Jensen et al. (2023). Then, I remove characteristics that are likely to be en-

dogenous in the demand function specification (1). For example, I remove return- and

price-based signals such as those comprising “momentum”, “seasonality”, and “short-

term reversal” themes. Some stock characteristics in “factor zoo” are constructed by

scaling a given variable by market equity me. In such cases, I re-scale the characteristic

by be to avoid endogenous variation in me that could violate the exclusion restriction.

This way, only me in (1) is endogenous and requires an instrument. The list of stock

characteristics (other than me and industry dummies) used in this study is provided in

Table A.4. The correlation matrix between stock characteristics is provided in Figure

A.2. In Figure A.3, I plot the correlation matrix between stock characteristics and 85

SIC 2-digit dummies.

In settings with high-dimensional estimation, it is customary to rank-normalize

the regressors.18 To preserve the original interpretation of the coefficient β0 that de-

scribes price elasticity in Koijen and Yogo (2019), Koijen et al. (2023), I do not rank-

normalize market equity but include it in logs me := log(ME), as in Koijen and Yogo

18The reason for this rank-normalization (or any alternative standardization) comes from the fact
that regularized estimators are typically not invariant to the scale of the inputs. Once the scale of the
inputs has been normalized across all regressors, this issue is avoided.

29



(2019), Koijen et al. (2023). All other stock characteristics in are rank-normalized to the

interval of [0, 1] except for SIC 2-digit dummies which are either 0 or 1 by construction.

To ensure that this rank-normalization does not affect price elasticity estimates other

than thought the covariance with characteristics, I estimate demand functions with log

me and rank-normalized log be rather than log market-to-book.19

5 Empirical Performance of Demand Functions Es-

timators

5.1 Cross-out-of-sample validation

In this section, I compare the performance of competing estimators of investor demand

functions on equity holdings data of active mutual funds. First, I estimate the mutual

fund demand functions using ridge-GMM with shrinkage towards group-level estimates

developed Koijen et al. (2023). Then, I estimate the demand functions using a sim-

ple alternative that shrinks the estimates towards the p × 1 vector of zeros, where p

is the dimension of characteristic vector. This estimator is a nonlinear counterpart of

the standard ridge regression where shrinkage the coefficients towards zero is applied

to reduce the variance of the estimates, mitigate multicollinearity, and ensure that es-

timates are well-defined. Unlike the original estimator in Koijen et al. (2023), this

estimator does not rely on shrinkage towards the group-level estimates and therefore,

it does not mask the heterogeneity of the demand functions’ estimates across insti-

tutional investors. However, by shrinking coefficients towards zero, it understates the

magnitude of characteristic-specific demand elasticities. Finally, I estimate mutual fund

demand functions using the proposed in the section 2 method of estimation of demand

system via data augmentation. Since the method in Koijen and Yogo (2019) allows one

to estimate only group-level demand loadings, I use Koijen et al. (2023) as the main

benchmark. Essentially, the key difference between Koijen and Yogo (2019) and Koijen

19Note that for me := log(ME), be := log(BE), and mb := log(ME/BE):

β0,i,tmej,t + β1,i,tbej,t =β0,i,t (mej,t − bej,t) + (β0,i,t + β1,i,t) bej,t

=β0,i,tmbj,t + (β0,i,t + β1,i,t) bej,t

Hence, we can estimate β0,i,t either as a coefficient on me or mb – the only thing that is affected by
this choice is the coefficient on be.
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Figure 6: Illustration of the Cross-Out-of-Sample Analysis
Training set includes folds other than the test fold, and cross-validation is performed only on the
training set to ensure that the prediction on the test fold is a proper out-of-sample exercise. The data
is split on the 5 folds randomly within each fund-year set of fund holdings.

et al. (2023) is that the latter method performs a second-step estimation where the

group-level estimates are used as shrinkage targets.

For all estimators (including those based on data augmentation), the price elastic-

ity is estimated on the grouped dataset to ensure the sufficient strength of the first stage

in IV estimation (while the coefficients on all other stock characteristics are estimated

using only individual fund-specific holdings data). The two-step nonlinear ridge-GMM

with group targets uses the IV estimates obtained nonlinear GMM in (5), while the

nonlinear ridge-GMM with zero targets and GMM with data augmentation use esti-

mates of price elasticity obtained from linear debiased GMM described in section 2.3.

Overall, the estimates of price elasticities are highly correlated across three methods.

The AUM-weighted average of the mutual fund price elasticities is about 0.5, which is

similar to the estimates obtained for small active 13F investors by Koijen et al. (2023).

Since price elasticities are not crucial for my application, I provide the details for the

interested readers in Appendix D.

I compare the performance of competing demand function estimators through the

cross-out-of-sample analysis. First, for each fund-quarter (e.g. 2022-Q2 of the Fidelity

Magellan Fund), the data is randomly split into 5 folds. Then, for each fold k = 1, ..., 5,

I perform estimation and hyperparameter selection using only the data from the 4 folds

other than k, and then use the data from the fold k to construct the out-of-sample

predictions of the fund portfolio weights ŵ and compute the out-of-sample error w− ŵ.
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Panel A: Distribution of cross-out-of-sample R2 across fund-quarters

Panel B: Time-series variation in median cross-out-of-sample R2

Figure 7: Performance of demand function estimators

Note: Panel A shows the distribution of cross-out-of-sample R2 across fund-quarters. Vertical dashed
(dotted) lines show the mean (median) of the distribution of cross-out-of-sample R2 for each estimation
approach. Panel B plots the time-series of median cross-out-of-sample R2. The figure shows only the
low-dimensional version of the nonlinear GMM with shrinkage towards group target since for high-
dimensional demand functions, the estimator systematically does not converge. In line with Koijen
et al. (2023), the demand functions are estimated for each fund annually. To mitigate the impact of
outliers on the mean, I winsorize the distribution of R2 for each estimator at 2.5%.

When performing cross-validation, I randomly split each training set into 5 validation

folds on which the CV-based search of hyperparameters is performed. This nested

structure (cross-validation within training set) ensures that prediction on the test set

is a proper out-of-sample exercise. Once the out-of-sample errors are obtained for all

5 folds, I compute the OOS MSE (mean squared error) and OOS R2 for each method

using the errors from all 5 folds:

MSEOOS,i,t(M) =
1

Ni,t

Ni,t∑
j=1

(
wtest

i,j,t − ŵpred
i,j,t

)2
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Table 1: Distribution of cross-out-of-sample R2 across fund-years

Estimator mean sd p10 p25 p50 p75 p90 Diff(mean) t-stat
Nonlinear ridge-GMM with group target (Low-dim.) 15.31 36.20 -16.02 7.00 21.40 35.51 48.42
Nonlinear ridge-GMM with zero target (Low-dim.) 26.47 19.95 5.04 15.15 26.66 39.29 51.61 11.15 51.25
Nonlinear ridge-GMM with linear target (Low-dim.) 25.80 21.57 4.04 14.77 26.51 39.37 51.71 10.50 46.57
Nonlinear ridge-GMM with dual target (Low-dim.) 28.42 18.57 6.51 16.29 28.06 40.84 53.12 13.12 57.25
Nonlinear GMM with single synthetic assets (Low-dim.) 28.00 19.80 5.53 16.17 28.23 41.15 53.28 12.69 56.94
Nonlinear GMM with dual synthetic assets (Low-dim.) 29.10 18.68 6.87 16.85 28.89 41.73 53.86 13.79 60.69
Nonlinear ridge-GMM with zero target (High-dim.) 28.07 20.78 6.52 17.30 29.00 41.21 53.15 12.77 56.82
Nonlinear ridge-GMM with linear target (High-dim.) 28.18 27.72 2.75 16.86 30.71 45.26 58.42 12.91 45.78
Nonlinear ridge-GMM with dual target (High-dim.) 33.78 20.28 9.10 20.47 33.76 47.88 60.60 18.50 75.49
Nonlinear GMM with single synthetic assets (High-dim.) 32.97 27.41 5.54 20.92 36.13 50.69 63.12 17.66 63.09
Nonlinear GMM with dual synthetic assets (High-dim.) 38.01 20.82 11.71 24.40 38.80 53.04 64.98 22.70 94.21

Note: nonlinear ridge-GMM with shrinkage towards group targets is the estimator proposed in Koijen
et al. (2023). Column Diff(mean) provides the difference between the mean cross-out-of-sample R2

of a given estimator and the Koijen et al. (2023) estimator. Column t-stat shows the t-stats associated
with the test of the significance in the difference reported in column Diff(mean). The table shows
only the low-dimensional version of the nonlinear GMM with shrinkage towards group target since
for high-dimensional demand functions, the estimator systematically does not converge. In line with
Koijen et al. (2023), the demand functions are estimated for each fund annually. To mitigate the impact
of outliers on the mean, I winsorize the distribution of R2 for each estimator at 2.5%. Standard errors
are clustered at mutual fund level.

R2
OOS,i,t(M) = 1− MSEOOS,i,t(M)

MSEOOS,i,t(EW )

Figure 6 illustrates the approach to the split of the data for the cross-out-of-

sample exercise. Figure 7 shows the results of cross-out-of-sample validation: both

across fund-years and in time series. Table 1 shows the details of the distribution of the

cross-out-of-sample (COOS) R2 for competing estimators. In column t-stat, I test the

differences between means of the distributions of COOS R2 for the estimator of Koijen

et al. (2023) and the competing estimator in a given row.

The results of the cross-out-of-sample analysis overall suggest that demand es-

timation with data augmentation proposed in section 2 outperforms substantially the

method of Koijen et al. (2023) both in the high-dimensional and low dimensional set-

tings. The mean of the distribution of the cross-out-of-sample R2 across fund-years

is roughly twice larger for the low-dimensional (including only 8 baseline stock char-

acteristics) nonlinear GMM with data augmentation compared to the low-dimensional

ridge-GMM with shrinkage towards group targets proposed by Koijen et al. (2023).

For high-dimensional demand functions – comprising 170 characteristics including char-

acteristics from factor zoo and SIC 2-digit industry dummies – the ridge-GMM with
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shrinkage towards group targets systematically doesn’t converge. In fact, all alternative

estimators in Table 1 have both economically and statistically higher mean cross-out-

of-sample R2 compared to the ridge-GMM with shrinkage towards group targets, sug-

gesting that shrinking towards the group-level estimates masks important heterogeneity

across mutual funds.

6 Application: Competition and Differentiation

Recently, there has been a rapid growth of the interest in the industrial organization of

asset management. In this paper, I provide an evidence of a new channel of mutual fund

differentiation from its peers. I show that in response to the increase in the competition

for alpha, active mutual funds start to pursue investment strategies that are less similar

to the strategies of their peers in a given style.

6.1 Asset demand function similarity

In the previous sections, I developed methodology that allows robust, high-quality es-

timation of the high-dimensional asset demand functions of individual institutional in-

vestors. Now, I propose to use the obtained estimates of the demand functions to

define a measure of similarity of institutional investors in the investment strategy space.

Specifically, define the asset demand function similarity between investors i and l at

time t as:

CosineSim(β̂i,t, β̂l,t) =

(
β̂i,t

)T
β̂l,t

∥β̂i,t∥2∥β̂l,t∥2

Economically, this measure considers two institutional investors to be similar in

terms of their investment strategy if their asset demand functions are similar. Unlike

univariate measures based on investment-weighted characteristics (Hoberg et al. (2018),

Lettau et al. (2018)), the cosine similarity between the high-dimensional demand func-

tion estimates has the following advantages: 1) it’s multivariate; 2) it allows to study the

implications of investor differentiation on asset prices through the structural model of

Koijen and Yogo (2019), Koijen et al. (2023). Furthermore, contrary to the prospectus-
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based measures of the mutual fund similarity (Kostovetsky and Warner (2020), Abis

and Lines (2024)), my measure has the advantage of capturing the actual investment

strategies pursued by the fund rather than measuring how mutual funds describe their

strategies to their investors. Another advantage over prospectus-based measures is that

holdings data are available not only for mutual funds but also for other institutional

investors through the 13F fillings.

A special case of asset demand function similarity is the similarity between in-

vestor i and the average investor in a given style:

CosineSim(β̂fund
i,t , β̂centro

s(i),t ) =

(
β̂fund
i,t

)T
β̂centro
s(i),t

∥β̂fund
i,t ∥2∥β̂centro

s(i),t ∥2
(24)

where s(i) denotes that the style s in β̂centro depends on the investor i. The demand

function centroid βcentro
s(i),t is defined as

β̂centro
s(i),t =

1

|{l ∈ s(i)}|

|{l∈s(i)}|∑
l=1

β̂fund
l,t (25)

where |{l ∈ s(i)}| denotes the number investors l that belong to the same style s(i) as

investor i. In general, the measure in (24) does not put any restriction on the definition

of the set of styles S. The natural candidates for S in the mutual fund industry are

Morningstar Mutual Fund Style Box, intransitive peer groups of Hoberg et al. (2018),

CRSP Mutual Fund Objective Code.

6.2 Response of mutual funds to increase in competition

Framework and identification. Before presenting the identification strategy and

empirical results, it is useful to outline the framework that will guide their interpretation.

I start with a setup where mutual funds face diseconomies of scale on the capital they

manage in the spirit of Berk and Green (2004), Barras et al. (2022):

αi,t = ai,t − bi,tqi,t−1 + ϵi,t (26)
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where αi,t is fund i’s risk-adjusted performance at time t; ai,t is fund i’s skill defined

as the risk-adjusted performance on the first dollar, qi,t−1 are asset under management

(AUM) that fund i has at time t − 1. The term bi,tqi,t−1 with bi,t > 0 captures the

diseconomies of scale at the fund level. That is, the more capital qi,t−1 fund has under

management, the lower is the risk-adjusted performance of fund i. The economic ratio-

nale behind such diseconomies are price impact and scarcity of investment ideas. The

latter implies that as fund’s size grows, it becomes harder to find very good investment

ideas, and fund manager has to opt for the less promising investment ideas.

To study competition among funds for alpha, it is necessary to incorporate the

effect of fund i’s peers on fund i’s performance. For this, I decompose fund i’s alpha on

the alpha of fund i’s style αs(i),t and the style-adjusted alpha α0,i,t:

αi,t = α0,i,t + αs(i),t = a0,i,t − b0,i,tq0,i,t−1 + as(i),t − bs(i),tqs(i),t−1 + ϵi,t + ϵs(i),t (27)

where the subscript s(i) denotes the style s to which the fund i belongs to. The term

bs(i),tqs(i),t−1, bs(i),t > 0 corresponds to the diseconomies of scale at the style level. This

term effectively captures how fund i’s competitors – defined as funds that belong to

the same style as fund i – impact fund i’s risk-adjusted performance through the disec-

onomies of scale at the style level.20

In order to investigate the effect of competition among funds for alpha, one

needs an exogenous shock to qs(i),t−1. In an ideal experiment, an empiricist would like

to compare the response of a group of funds that have been “randomly treated” by

increase in competition (here, defined as competitors’ AUM qs(i),t−1) to the response of

a control group that didn’t experience such an increase. As an approximation of this

ideal setting, I exploit the Morningstar mutual fund ratings reform in June 2002, which

changed the way ratings are computed. Before June 2002, mutual ratings were assigned

based on the metric of fund’s performance that was not adjusted for the fund’s style.

This feature of the ratings methodology was thus disadvantaging those mutual funds

which operated in poor-performing styles, while overestimating the quality of funds

20The latter can be interpreted as effect of crowding in trades (collective price impact of funds) or
crowding in ideas (the more funds search for and implement investment strategies in a given style, the
less unexploited investment ideas are available).
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from well-performing styles (see Ben-David et al. (2020)). After June 2002, Morningstar

updated its methodology to account for the funds’ style using the well-know 3×3 Mutual

Fund Style Box. Morningstar mutual fund ratings have been shown to direct fund flows

(Ben-David et al., 2020), which motivates the relevance condition of style-level AUM

being affected by the Morningstar reform.

Specifically, I perform 2SLS estimation of the following fund-quarter panel re-

gression:

CosineSim(β̂fund
i,t+h, β̂

centro
s(i),t+h) = θhPctF lowCompeti,t + Controlsi,t + FEi + FEt + ϵi,t+h

(28)

where CosineSim(β̂fund
i,t+h, β̂

centro
s(i),t+h) is the asset demand function similarity between fund

i in quarter t+ h and the centroid of fund i’s style in the same quarter t+ h, defined in

(25). Variable PctF lowCompeti,t is the quarterly percentage flow to fund i’s competitors

defined as other funds in the same style. Specifically,

PctF lowCompeti,t =

∑
j∈s(i), j ̸=i

DollarF lowj,t∑
j∈s(i), j ̸=i

qj,t−1

× 100% (29)

Effectively, PctF lowCompeti,t represents the (percentage) change in qs(i),t−1 from (27).

The dollar flow and percentage flow of individual fund i are defined as follows:

DollarF lowi,t =qj,t − qj,t−1 · (1 + rj,t) (30)

PctF lowi,t =
DollarF lowi,t

qj,t−1

× 100% (31)

I estimate equation (28) separately for each horizon h ranging from the first quarter

to the quarter H after the reform. Control variables include logarithm of fund i’s

AUM, percentage flow to fund i, fund i’s raw return at time t as well as AUM-weighted

raw return of competitors. I also include fund and quarter fixed effects to absorb time-

invariant unobserved heterogeneity across mutual funds and common shocks across time

periods.

To account for endogeneity, PctF lowCompeti,t is instrumented with the style’s
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Table 2: First stage of 2SLS estimation

Dependent Variable: PctFlowCompet
Model: (1) (2) (3) (4) (5) (6)

Variables
ExposureMSshock x Post 1.513∗∗∗ 1.478∗∗∗ 1.508∗∗∗ 1.513∗∗∗ 1.478∗∗∗ 1.508∗∗∗

(0.0215) (0.0230) (0.0254) (0.2351) (0.2352) (0.2593)
log(FundAUM) -0.3135∗∗∗ -0.3257∗∗∗ -0.3135∗∗∗ -0.3257∗∗∗

(0.0659) (0.0674) (0.0688) (0.0552)
PctFlowFund 0.0079∗∗∗ 0.0083∗∗∗ 0.0079∗∗ 0.0083∗∗∗

(0.0016) (0.0016) (0.0029) (0.0022)
ReturnFund 0.0132∗∗∗ 0.0158∗∗∗ 0.0132 0.0158∗∗∗

(0.0040) (0.0041) (0.0078) (0.0044)
ReturnCompetVW -0.0507∗∗∗ -0.0507

(0.0169) (0.1311)

Fixed-effects
Fund Yes Yes Yes Yes Yes Yes
Quarter Yes Yes Yes Yes Yes Yes

Fit statistics
Cluster S.E. Fund Fund Fund Style Style Style
Observations 26,186 26,086 26,086 26,186 26,086 26,086
R2 0.66544 0.66678 0.66724 0.66544 0.66678 0.66724
Within R2 0.24960 0.25239 0.25341 0.24960 0.25239 0.25341

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table shows the results of the first stage of 2SLS estimation of (28). The percentage flow to
fund i’s competitors PctF lowCompeti,t is instrumented with the exposure to the Morningstar mutual
fund ratings reform ExposureMSshocks(i),t×Postt. Variable Postt is equal to 1 after the reform took
place (2002 Q3 onwards), and zero otherwise.

PctF lowCompeti,t = κ · ExposureMSshocks(i),t × Postt + Controlsi,t + FEi + FEt + ηi,t

Clustered standard errors are reported in parenthesis.

exposure to the Morningstar mutual fund ratings reform interacted with a dummy

indicated that the reform took place, ExposureMSshocks(i),t × Postt. Specifically,

Postt is equal to 1 starting from the Q3 of 2002 – after the enactment of the reform

in June 2002. To define the set of mutual fund styles S, I use Morningstar 3×3 style

box. The measure ExposureMSshocks(i),t is constructed as a rank ranging from -4 if

the style was most negatively affected by the reform (largest average rating downgrade),

to +4 if the style was most positively affected (largest average rating upgrade).21 For

the purpose of the construction of the instrument, the fund’s style s(i) is defined as the

last style the fund i belong to just before the reform.

The exclusion restriction in (28) relies on the identifying assumption that the

only channel through which Morningstar mutual fund ratings reform impacted funds’

portfolio decisions are the diseconomies of scale at the style level. To account for the

21Since there are 9 styles, there are nine rank “levels” between -4 and +4.
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potential impact of the Morningstar reform through the style performance, I control in

my all specifications for the style-level performance of fund i’s competitors.

The first stage of 2SLS estimation in (28) is strong with t-stat comfortably sur-

passing the threshold of 4.05 proposed by Stock and Yogo (2005). The results for the

first stage are reported in Table 2.

Results. The results of OLS and 2SLS estimation of (28) across horizons up to 16

quarters are presented in Figure 8. The results of the second stage of 2SLS estimation

are also shown in Table 3. The coefficient plot suggests that mutual funds start to

differentiate from their competitors around 1 year after the increase in competition for

alpha. Since the dependent variable CosineSim(β̂fund
i,t+h, β̂

centro
s(i),t+h) is standardized,22 the

estimates suggest that 10% increase in flows to fund i’s competitors lead to the decrease

in cosine similarity by approximately 0.18 standard deviations, which is economically

significant.

One can note the absence of a pre-trend in the coefficient plot of 2SLS in (8).

In the context of my specification, it means that the part of variation in competitors’

flows coming from the Morningstar mutual fund rating reform does not correlate with

mutual fund differentiation before reform. This supports the identifying assumption by

showing that the reform was not, on average, anticipated by active mutual funds.

While both OLS and 2SLS estimates provide qualitatively consistent conclusion

about the decrease of the similarity between those funds exposed to the increase in

competition and their peers, two distinctions are worth to note. First, the magnitude

of 2SLS coefficient is about 3 times larger than that of OLS. One possible interpreta-

tion of this finding is that OLS estimation of (28) suffers from the measurement error.

Implicit assumption in (28) is that we correctly measure which mutual funds are con-

sidered by a given fund i to be its competitors. It is possible that the actual set of

competitors according to fund i’s subjective measure of competition can be different

from the 3 × 3 Morningstar style box used in my analysis. Alternatively, it could be

that cross-diseconomies of scale23 Ei[bl] , l ∈ s(i) is heterogeneous according to fund i’s

22by pre-June 2002 standard deviation.
23How fund j’s AUM qj affects fund i’s ability to find and exploit investment opportunities
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expectations, and thus, the correct measure of the competition should be a weighted by

subjective proximity of competitors version of the flows to fund i’s competitors. In the

presence of measurement error in the independent variable, the OLS estimates in (28)

can be biased towards zero. If Morningstar mutual fund ratings reform is uncorrelated

with this measurement error, the 2SLS estimation would eliminate the above-mentioned

attenuation bias, which can reconcile the notable difference between the magnitudes of

OLS and 2SLS estimates.

Second notable difference between OLS and 2SLS estimates presented in Figure

8 is that mutual differentiation starts almost immediately according to the OLS results,

but only after about 6-8 quarters according to the 2SLS estimates. One possibility is

that mutual funds anticipate the increase in competition, and adjust their investment

strategies before or at the same time as the competition is growing. Since OLS es-

timation of (28) is not robust to this type of endogeneity, one is likely to observe a

much earlier onset of the differentiation. However, with instrumented competition, the

expectations-driven endogeneity is mitigated since the Morningstar mutual fund reform

was not largely anticipated by mutual funds (Ben-David et al. (2022)).

To show that the finding displayed in Figure 8 is not an artifact of estimation

with synthetic assets, I replicate the same results using alternative high-dimensional

estimators. As can be seen in Figure 11, the results are qualitatively and quantitatively

similar if the demand function coefficients are estimated using alternative specification

of synthetic assets.

Interestingly, the result on differentiation can not be obtained using univariate

approach of investment-weighted stock characteristics used in Hoberg et al. (2018),

Lettau et al. (2018). To show this, I construct the measure of similarity between the

mutual fund i and the centroid of fund i’s style s(i) as the similarity between the two

vectors of portfolio-weighted stock characteristics: CosineSim(cfundi,t+h, c
centro
s(i),t+h), where:

cfundi,t =

ni,t∑
j=1

wi,j,tcj,t (32)

where cj,t ∈ Rp×1 is a vector of p characteristics of stock j. To ensure the comparability
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(a) OLS

(b) 2SLS

Figure 8: Mutual fund differentiation in response to increased competition

Note: This figure plots the point estimates and 95% confidence intervals for θh obtained by estimating
(28) for h = −4, ..., 16. Panel A shows estimates obtained through OLS estimation of (28). Panel
B presents the results of 2SLS estimation of (28), where the percentage flow to fund i’s competitors
PctF lowCompeti,t is instrumented with the exposure to the Morningstar mutual fund ratings reform
ExposureMSshocks(i),t × Postt. Controls include the logarithm of fund i’s AUM, return of fund i,
percentage flow of fund i as well as AUM-weighted returns of fund i’s competitors. Cosine similarity
between asset demand functions CosineSim(β̂fund

i,t+h, β̂
centro
s(i),t+h) is based on nonlinear GMM estimation

under moment conditions (14) with dual data augmentation. The dependent variable is normalized by
the pre-June 2002 standard deviation. Standard errors are clustered at the fund level.

across characteristics, I rank-normalize all continuous stock characteristics to [0, 1]. The

style centroid of fund i’s style is defined analogously to (25), with funds’ β ∈ Rp×1 being

replaced by funds’ characteristic vector c ∈ Rp×1.

As can be seen in Figure 9, both OLS and 2SLS deliver null results. This supports

the usefulness of the high-dimensional multivariate approach to the measurement of
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Table 3: Second stage of 2SLS estimation

Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Variables
PctFlowCompet -0.0038 -0.0064 -0.0092∗ -0.0106∗∗ -0.0125∗∗ -0.0127∗∗ -0.0185∗∗∗ -0.0183∗∗∗ -0.0184∗∗∗ -0.0171∗∗∗ -0.0153∗∗∗ -0.0103∗

(0.0048) (0.0047) (0.0048) (0.0050) (0.0054) (0.0055) (0.0057) (0.0058) (0.0058) (0.0058) (0.0059) (0.0061)
log(FundAUM) -0.0029 -0.0018 -0.0027 0.0012 0.0198 0.0368 0.0346 0.0244 0.0329 0.0125 -0.0003 0.0097

(0.0213) (0.0217) (0.0222) (0.0232) (0.0248) (0.0259) (0.0265) (0.0283) (0.0294) (0.0304) (0.0310) (0.0311)
PctFlowFund -0.0007 -0.0005 -0.0008∗ -0.0005 -0.0004 -0.0002 0.0003 0.0005 0.0009∗ 0.0007 0.0010∗∗ 0.0002

(0.0004) (0.0004) (0.0004) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0004) (0.0005)
ReturnFund -0.0003 0.0001 -0.0010 -0.0014∗ -0.0011 -0.0007 0.0004 -0.0006 -0.00008 -0.0004 -0.0015∗∗ 0.0005

(0.0008) (0.0007) (0.0008) (0.0008) (0.0008) (0.0007) (0.0008) (0.0008) (0.0008) (0.0007) (0.0007) (0.0008)
ReturnCompetVW -0.0009 -0.0014 0.0039∗ -0.0015 -0.00008 -0.0026 0.0034 0.0007 0.0024 0.0020 0.0020 -0.0008

(0.0024) (0.0024) (0.0023) (0.0022) (0.0021) (0.0023) (0.0024) (0.0026) (0.0025) (0.0024) (0.0026) (0.0025)

Fixed-effects
Fund Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Quarter Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Cluster S.E. Fund Fund Fund Fund Fund Fund Fund Fund Fund Fund Fund Fund
Observations 23,596 22,603 21,626 20,667 19,719 18,776 17,850 16,918 15,984 15,036 14,093 13,154
R2 0.3616 0.3683 0.3762 0.3812 0.3863 0.3904 0.3917 0.3965 0.4068 0.4160 0.4319 0.4481
Within R2 0.0007 0.0004 0.0011 0.0010 0.0001 -0.0001 -0.0034 -0.0042 -0.0067 -0.0057 -0.0032 -0.0016

Clustered (Fund) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table presents the results of 2SLS estimation of (28), where the percentage flow to fund
i’s competitors PctF lowCompeti,t is instrumented with the exposure to the Morningstar mutual fund
ratings reform ExposureMSshocks(i),t × Postt. Each column corresponds to the horizon h ∈ 1, ...12
at which the effect of increased competition on differentiation is estimated. Controls include the
logarithm of fund i’s AUM, return of fund i, percentage flow of fund i as well as AUM-weighted returns
of fund i’s competitors. Cosine similarity between asset demand functions CosineSim(β̂fund

i,t+h, β̂
centro
s(i),t+h)

is based on nonlinear GMM estimation under moment conditions (14) with dual data augmentation.
The dependent variable is normalized by the pre-June 2002 standard deviation. Standard errors are
clustered at the fund level and are reported in parenthesis.

investment strategies from mutual fund holdings.

Overall, the results suggest that active mutual funds respond to the increase

in competition through differentiation. The economic implications of this finding are

two-fold. First, increase in competition encourages innovation in the investment strat-

egy space through the search of investment opportunities that are different from those

exploited by competitors, broadly consistent with the theoretical work on escape com-

petition effect Aghion et al. (2005), Aghion et al. (2009). Second, as mutual funds

differentiate within the style, their risk exposures are likely to change as well. This

provides support for the customized-peer performance evaluation, such as in Hoberg

et al. (2018), Abis and Lines (2024).

6.3 Channels of differentiation

Another advantage of using high-dimensional demand functions to measure differentia-

tion between funds is that it is straightforward to compute partial similarity with respect
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(a) OLS

(b) 2SLS

Figure 9: Mutual fund differentiation in response to increased competition: 2SLS, näıve esti-
mators

Note:
Controls include the logarithm of fund i’s AUM, return of fund i, percentage flow of fund i as well

as AUM-weighted returns of fund i’s competitors. Cosine similarity between asset demand functions
CosineSim(β̂fund

i,t+h, β̂
centro
s(i),t+h) is based on nonlinear GMM estimation under moment conditions (14)

with dual data augmentation as proposed in section 2. The dependent variable is normalized by the
pre-June 2002 standard deviation. Standard errors are clustered at the fund level.

to a given set of stock characteristics. For example, given the evidence of mutual fund

differentiation in response to increased competition, one might wonder which demand

function loadings drive this differentiation. In this subsection, I further explore which

themes of stock characteristics (defined following Jensen et al. (2023)) do mutual funds

differentiate along.

I define partial cosine similarity between asset demand functions as the cosine

43



(a) Total (b) Accruals (c) Debt issuance

(d) Foreign Sales (e) Industries (f) Investment

(g) Low leverage (h) Low risk (i) Profit Growth

(j) Profitability (k) Quality (l) Size

Figure 10: Partial differentiation along subsets of stock characteristics
Note: The dependent variable in all panels is normalized by the pre-June 2002 standard deviation of
the total cosine similarity (to make the magnitude comparable across all panels). Standard errors are
clustered by fund.

similarity between loadings of demand functions specific to a given subset of stock

characteristics. For example, a partial cosine similarity with respect to profitability

theme is the cosine similarity between the two vectors of demand function loadings

on stock characteristics comprising the profitability theme. I plot the results of 2SLS

estimation for each of the characteristic themes as well for the industry dummies in

Figure 10. Results suggest that mutual funds differentiate predominantly along the

exposures to characteristics in investment, accruals, and profitability theme, but not

through the differentiated industry exposures.
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(a) nonlinear GMM with (dual) synthetic as-
sets

(b) nonlinear GMM with (single) synthetic as-
sets

Figure 11: Robustness to the choice of the demand function estimator: Mutual fund differen-
tiation in response to increased competition
Note: The dependent variable is normalized by the pre-June 2002 standard deviation. Standard
errors are clustered by fund.

7 Robustness

7.1 Alternative high-dimensional multivariate estimators

In this subsection, I replicate the analysis of the effect of increased competition on

mutual fund differentiation using alternative high-dimensional estimators. The results

the displayed in Figure 11. The main result is robust to the specification of synthetic

assets.

8 Conclusion

In this paper, I address the issue that many institutional investors hold concentrated

portfolios, which makes it challenging to thoroughly describe the individual demand of

institutional investors. I propose a data augmentation technique based on the generation

of data-driven and economically interpretable synthetic assets. I show that this data

augmentation acts as an adaptive shrinkage which automatically adjusts the shrinkage

rate to the cost of overfitting faced by the nonlinear demand function estimator. The

resulting estimation technique leads to substantial improvement in cross-out-of-sample

R2 for estimation of both low-dimensional and high-dimensional demand functions.

I use the proposed methodology to construct a measure of investor differentiation.

Using the Morningstar mutual fund ratings reform in 2002 as a shock to competition

for alpha, I show that mutual funds escape the increased competition through differen-
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tiation from the competitors. The economic implications of this finding are two-fold.

First, increase in competition encourages innovation in the investment strategy space

through the search of investment opportunities that are different from those exploited

by competitors, broadly consistent with the theoretical work on escape competition ef-

fect Aghion et al. (2005), Aghion et al. (2009). Second, as mutual funds differentiate

within the style, their risk exposures are likely to change as well. This provides support

for the customized-peer performance evaluation, such as in Hoberg et al. (2018), Abis

and Lines (2024).
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A Descriptive Statistics

A.1 Active Equity Mutual Funds

Table A.1: Number of stocks in portfolios of active equity mutual funds

Panel A: Post-2010, Quarterly

variable mean sd min p01 p10 p15 p20 p25 p50 p75 p90 p99 max

n stocks (w > 0) 183.2 311.4 13.0 21.0 32.0 38.0 44.0 52.0 103.0 185.0 332.0 1625.0 4692.0
n stocks (IU) 350.4 484.3 16.0 29.0 56.0 69.0 84.0 99.0 201.0 396.0 733.0 2488.6 5647.0

Panel B: Pre-2010, Quarterly

variable mean sd min p01 p10 p15 p20 p25 p50 p75 p90 p99 max

n stocks (w > 0) 80.9 92.6 19.0 21.0 30.0 34.0 37.0 40.0 57.0 87.0 142.0 437.0 2366.0
n stocks (IU) 172.4 156.6 20.0 33.0 57.0 66.0 75.0 84.0 129.0 205.0 322.0 806.0 3048.0

Panel C: Full Sample, Quarterly

variable mean sd min p01 p10 p15 p20 p25 p50 p75 p90 p99 max

n stocks (w > 0) 134.7 240.3 13.0 21.0 31.0 35.0 40.0 44.0 72.0 136.0 244.0 1209.5 4692.0
n stocks (IU) 266.1 378.1 16.0 30.0 56.0 67.0 78.0 89.0 154.0 293.0 540.0 1933.2 5647.0

Panel A: Post-2010, Annually

variable mean sd min p01 p10 p15 p20 p25 p50 p75 p90 p99 max

n stocks (w > 0) 649.5 1135.3 17.0 25.0 94.0 117.0 141.0 167.0 359.0 675.0 1191.0 6188.0 17162.0
n stocks (IU) 1242.1 1780.4 20.0 43.0 159.0 210.0 260.0 317.0 684.0 1421.0 2655.0 9026.1 21997.0

Panel B: Pre-2010, Annually

variable mean sd min p01 p10 p15 p20 p25 p50 p75 p90 p99 max

n stocks (w > 0) 240.8 299.5 19.0 23.0 61.0 77.0 91.0 104.0 170.0 275.0 444.0 1431.0 7028.0
n stocks (IU) 513.6 525.4 20.0 40.0 116.0 149.0 178.0 206.0 371.0 632.0 1040.5 2663.1 7563.0

Panel C: Full Sample, Annually

variable mean sd min p01 p10 p15 p20 p25 p50 p75 p90 p99 max

n stocks (w > 0) 438.2 842.9 17.0 24.0 72.0 92.0 107.0 124.0 224.0 446.0 833.0 4261.6 17162.0
n stocks (IU) 865.4 1343.9 20.0 41.0 133.0 170.0 206.0 243.0 472.0 953.0 1809.0 7079.7 21997.0

Note: In the table, “n stocks (w > 0)” correspond to the number of stocks actually held by mutual
fund with strictly positive weight in fund’s portfolio. The variable “n stocks (IU)” is the number of
stocks in fund’s investment universe, which is defined following Koijen and Yogo (2019), Koijen et al.
(2023) as the set of stocks that have been held by a given fund over the last 12 quarters. The set of
stocks includes inside assets as per definition of Koijen and Yogo (2019), Koijen et al. (2023), which
are the assets on which the estimation of the demand function is performed. If a mutual fund does not
report any holdings in a given year, this fund-year observation is not counted in the computation of
descriptive statistics.
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A.2 13F Institutional Investors

Table A.2 reports the descriptive statistics for the number of stocks held by institutional

investors that report to 13F.

Table A.2: Number of stocks in portfolios of 13F institutional investors

Panel A: Post-2010, Quarterly

variable mean sd min p01 p10 p15 p20 p25 p50 p75 p90 p99 max

n stocks (w > 0) 229.8 343.7 20.0 21.0 34.0 41.0 48.0 54.0 97.0 224.0 582.0 1801.0 2510.0
n stocks (IU) 354.8 436.9 20.0 31.0 58.0 69.0 79.0 89.0 170.0 419.0 959.0 1989.0 2562.0

Panel B: Pre-2010, Quarterly

variable mean sd min p01 p10 p15 p20 p25 p50 p75 p90 p99 max

n stocks (w > 0) 244.6 388.0 20.0 22.0 38.0 45.0 51.0 58.0 102.0 237.0 583.0 2069.6 3517.0
n stocks (IU) 393.2 485.7 20.0 38.0 72.0 84.0 96.0 108.0 197.0 462.0 985.0 2365.0 3562.0

Panel C: Full Sample, Quarterly

variable mean sd min p01 p10 p15 p20 p25 p50 p75 p90 p99 max

n stocks (w > 0) 236.4 364.1 20.0 22.0 36.0 43.0 49.0 56.0 100.0 230.0 582.0 1895.0 3517.0
n stocks (IU) 371.8 459.5 20.0 33.0 63.0 75.0 86.0 97.0 182.0 440.0 970.0 2129.0 3562.0

Panel D: Post-2010, Annually

variable mean sd min p01 p10 p15 p20 p25 p50 p75 p90 p99 max

n stocks (w > 0) 801.1 1291.4 20.0 22.0 86.0 112.0 139.0 167.0 328.0 748.0 2037.0 7032.0 9936.0
n stocks (IU) 1236.6 1656.7 20.0 36.0 142.0 190.0 235.0 281.0 559.0 1408.0 3355.0 7757.0 10198.0

Panel E: Pre-2010, Annually

variable mean sd min p01 p10 p15 p20 p25 p50 p75 p90 p99 max

n stocks (w > 0) 840.2 1434.5 20.0 26.0 95.0 124.0 151.0 177.0 340.0 786.0 1996.0 7870.8 13768.0
n stocks (IU) 1350.8 1821.4 20.0 51.0 174.0 227.8 280.0 329.0 636.0 1554.0 3463.0 9157.0 13991.0

Panel F: Full Sample, Annually

variable mean sd min p01 p10 p15 p20 p25 p50 p75 p90 p99 max

n stocks (w > 0) 818.5 1357.3 20.0 24.0 89.0 117.0 145.0 171.0 333.0 765.0 2023.4 7276.9 13768.0
n stocks (IU) 1287.6 1733.1 20.0 42.0 157.0 205.0 253.0 300.0 594.0 1469.0 3408.0 8202.0 13991.0

Note: In the table, “n stocks (w > 0)” correspond to the number of stocks actually held by mutual
fund with strictly positive weight in fund’s portfolio. The variable “n stocks (IU)” is the number of
stocks in fund’s investment universe, which is defined following Koijen and Yogo (2019), Koijen et al.
(2023) as the set of stocks that have been held by a given fund over the last 12 quarters. The set of
stocks includes inside assets as per definition of Koijen and Yogo (2019), Koijen et al. (2023), which
are the assets on which the estimation of the demand function is performed. If a 13F institutional
investor does not report any holdings in a given year, this investor-year observation is not counted in
the computation of descriptive statistics.

52



A.3 Passive Equity Mutual Funds

Table A.3: Number of stocks in portfolios of passive equity mutual funds

Panel A: Post-2010, Quarterly

variable mean sd min p01 p10 p15 p20 p25 p50 p75 p90 p99 max

n stocks (w > 0) 897.8 1018.1 18.0 28.0 119.0 158.0 214.0 248.0 539.0 1178.0 2035.9 5337.9 6401.0
n stocks (IU) 1181.0 1107.1 21.0 39.0 225.0 298.0 368.0 417.0 910.0 1455.0 2498.9 5644.8 6992.0

Panel B: Pre-2010, Quarterly

variable mean sd min p01 p10 p15 p20 p25 p50 p75 p90 p99 max

n stocks (w > 0) 467.8 459.4 19.0 25.0 72.0 90.0 133.0 177.0 410.0 458.0 1171.0 2180.5 3998.0
n stocks (IU) 580.7 504.9 20.0 31.0 119.0 204.0 263.0 317.0 435.0 572.0 1392.4 2285.0 4497.0

Panel C: Full Sample, Quarterly

variable mean sd min p01 p10 p15 p20 p25 p50 p75 p90 p99 max

n stocks (w > 0) 782.9 923.2 18.0 27.0 96.0 138.0 186.0 234.0 426.0 1079.0 1718.5 5155.6 6401.0
n stocks (IU) 1020.7 1018.3 20.0 35.0 198.0 271.0 340.0 389.0 666.0 1315.0 2144.0 5464.5 6992.0

Panel A: Post-2010, Annually

variable mean sd min p01 p10 p15 p20 p25 p50 p75 p90 p99 max

n stocks (w > 0) 3207.6 3846.4 20.0 58.0 327.0 461.0 604.0 803.0 1797.0 4313.0 7085.0 20800.8 25410.0
n stocks (IU) 4219.5 4220.2 27.0 97.0 546.0 857.0 1125.0 1368.0 3123.0 5370.0 8990.0 21858.4 25745.0

Panel B: Pre-2010, Annually

variable mean sd min p01 p10 p15 p20 p25 p50 p75 p90 p99 max

n stocks (w > 0) 1419.0 1517.8 20.0 44.6 164.0 241.9 337.6 419.0 1010.5 1685.2 3394.1 7549.5 10199.0
n stocks (IU) 1761.4 1693.3 20.0 58.0 324.3 424.0 523.2 721.2 1328.0 1828.5 4240.3 8243.1 11351.0

Panel C: Full Sample, Annually

variable mean sd min p01 p10 p15 p20 p25 p50 p75 p90 p99 max

n stocks (w > 0) 2670.5 3422.7 20.0 54.0 260.0 375.0 492.8 653.0 1468.0 3522.0 6022.6 19006.4 25410.0
n stocks (IU) 3481.3 3819.9 20.0 78.0 418.4 640.6 872.0 1065.0 2078.0 4736.0 7420.6 20240.0 25745.0

Note: In the table, “n stocks (w > 0)” correspond to the number of stocks actually held by mutual
fund with strictly positive weight in fund’s portfolio. The variable “n stocks (IU)” is the number of
stocks in fund’s investment universe, which is defined following Koijen and Yogo (2019), Koijen et al.
(2023) as the set of stocks that have been held by a given fund over the last 12 quarters. The set of
stocks includes inside assets as per definition of Koijen and Yogo (2019), Koijen et al. (2023), which
are the assets on which the estimation of the demand function is performed. If a mutual fund does not
report any holdings in a given year, this fund-year observation is not counted in the computation of
descriptive statistics.
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A.4 Frequency of Reporting by Institutional Investors

Panel A: Active equity mutual funds, Annually

Panel B: Passive equity mutual funds, Annually

Panel C: 13F institutions investors, Annually

Figure A.1: Number of holdings’ snapshots reported by institutional investors per year

Note: If a mutual fund (13F institutional investor) does not report any holdings in a given year,
this fund-year (investor-year) observation is not counted in the computation of mean and percentiles.
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A.5 List of Stock Characteristics

Table A.4: List of stock characteristics in high-dimensional specification

Code Name Theme Rescaling KY19 or KRY23 baseline

at gr1 Asset Growth Investment Yes
beta 60m Market beta Low risk Yes
ope be Operating profits-to-book equity Profitability Yes
lerner Profit margin Profitability Yes
be Book equity Size Yes
div12m be Dividend yield Value me Yes
sale be Sales-to-market Value me Yes
foreign sales Foreign sales Foreign sales Yes
cowc gr1a Change in current operating working capital Accruals -
oaccruals at Operating accruals Accruals -
oaccruals ni Percent operating accruals Accruals -
taccruals ni Percent total accruals Accruals -
taccruals at Total accruals Accruals -
fnl gr1a Change in financial liabilities Debt issuance -
ncol gr1a Change in noncurrent operating liabilities Debt issuance -
debt gr3 Growth in book debt (3 years) Debt issuance -
dbnetis at Net debt issuance Debt issuance -
capex abn Abnormal corporate investment Investment -
capx gr1 CAPEX growth (1 year) Investment -
capx gr2 CAPEX growth (2 years) Investment -
capx gr3 CAPEX growth (3 years) Investment -
ppeinv gr1a Change PPE and Inventory Investment -
be gr1a Change in common equity Investment -
coa gr1a Change in current operating assets Investment -
col gr1a Change in current operating liabilities Investment -
lti gr1a Change in long-term investments Investment -
lnoa gr1a Change in long-term net operating assets Investment -
nfna gr1a Change in net financial assets Investment -
nncoa gr1a Change in net noncurrent operating assets Investment -
noa gr1a Change in net operating assets Investment -
ncoa gr1a Change in noncurrent operating assets Investment -
sti gr1a Change in short-term investments Investment -
emp gr1 Hiring rate Investment -
inv gr1a Inventory change Investment -
inv gr1 Inventory growth Investment -
saleq gr1 Sales Growth (1 quarter) Investment -
sale gr1 Sales Growth (1 year) Investment -
sale gr3 Sales Growth (3 years) Investment -
at be Book leverage Low leverage -
cash at Cash-to-assets Low leverage -
age Firm age Low leverage -
netdebt be Net debt-to-price Low leverage me -
ocfq saleq std Cash flow volatility Low risk -
betadown 252d Downside beta Low risk -
earnings variability Earnings variability Low risk -
betabab 1260d Frazzini-Pedersen market beta Low risk -
ocf at chg1 Change in operating cash flow to assets Profit Growth -
niq at chg1 Change in quarterly return on assets Profit Growth -
niq be chg1 Change in quarterly return on equity Profit Growth -
dsale dinv Change sales minus change Inventory Profit Growth -

Continued on the next page.
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List of stock characteristics in high-dimensional specification (Continued)

Code Name Theme Rescaling KY19 or KRY23 baseline
dsale dsga Change sales minus change SG&A Profit Growth -
dsale drec Change sales minus change receivables Profit Growth -
saleq su Standardized Revenue surprise Profit Growth -
niq su Standardized earnings surprise Profit Growth -
tax gr1a Tax expense surprise Profit Growth -
ocf at Operating cash flow to assets Profitability -
niq be Quarterly return on equity Profitability -
ni be Return on equity Profitability -
ebit be Return on net operating assets Profitability bev -
pi nix Taxable income-to-book income Profitability -
at turnover Capital turnover Quality -
cop atl1 Cash-based operating profits-to-lagged book assets Quality -
dgp dsale Change gross margin minus change sales Quality -
ni ar1 Earnings persistence Quality -
gp at Gross profits-to-assets Quality -
sale emp gr1 Labor force efficiency Quality -
aliq at Liquidity of book assets Quality -
noa at Net operating assets Quality -
ni inc8q Number of consecutive quarters with earnings increases Quality -
opex at Operating leverage Quality -
op at Operating profits-to-book assets Quality -
niq at Quarterly return on assets Quality -
rd5 at R&D capital-to-book assets Quality -
rd be R&D-to-market Quality me -
rd sale R&D-to-sales Quality -
debt be Debt-to-market Value me -
ebitda be Ebitda-to-market enterprise value Value mev -
eqnpo 12m Equity net payout Value -
fcf be Free cash flow-to-price Value me -
eqnetis at Net equity issuance Value -
eqnpo be Net payout yield Value me -
chcsho 12m Net stock issues Value -
netis at Net total issuance Value -
ocf be Operating cash flow-to-market Value me -
eqpo be Payout yield Value me -

Note: Column Code provides the code name of the characteristic used within this study. The code
names already incorporate the re-scaling by be if the latter is necessary.
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A.6 Correlation Matrix of Stock Characteristics

Figure A.2: Correlation matrix: Stock Characteristics

Note: Stock characteristics (except industry dummies) are rank-normalized cross-sectionally.
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Figure A.3: Correlation matrix: Stock Characteristics vs Industries

Note: Stock characteristics (except industry dummies) are rank-normalized cross-sectionally.
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Figure B.1: Summary of data generating process in simulation study
Note:

B Details of Simulation Study Design

Assets are simulated. Their exogenous characteristics (other than market equity me)

follow multivariate normal distribution:

xi ∼N(0,Σ) (33)

where Σ ∈ Rp×p follows Toeplitz design with base σX,base = −0.75 truncated at σX = 0.2.

Specifically,

σX,k,m =

(−0.75)|k−m| if |(−0.75)|k−m|| > 0.2

0.2 · sign(k −m) otherwise

(34)

The negative base σbase = −0.75 induces negative (positive) correlation between

characteristics whose indices differ by odd (even) number.24 Since (−0.75)|k−m| = 1

when k = m, the variance of asset characteristics is normalized to 1. As can be seen

from (34), the key feature of Toeplitz-designed covariance matrix is that the (abso-

lute) correlation between characteristics is decaying in the distance between the indices

24For example, if k = 1 and m = 2, one obtains σk,m = (−0.75)|−1| = −0.75 < 0. However, for m
that are distant by even number from k, the correlation is positive. For example, for m = 3, one has
σk,m = (−0.75)|−2| = (−0.75)2 > 0.
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of characteristics. Indeed, as |k − m| becomes large, (−0.75)|k−m| goes to zero. To

induce non-sparsity in Σ, I truncate the absolute correlation between any two asset

characteristics at σ = 0.2. This provides a more challenging setting for estimators since

all characteristics are correlated at least to some degree. Toeplitz design of variance-

covariance matrix is commonly used in simulation studies.25 The illustration of Σ for

p = 25 is provided in Figure B.1.

The market equity of asset mej is generated to be endogenous:

mej = µTxj + ηzj + νj (35)

where νj is endogenous component of market equity, whereas zj is exogenous component.

The correlation between market equity and exogenous characteristics is modelled via

the vector µ ∈ Rp×1. The vector µ is drawn from p-dimensional uniform distribution

Unif(−0.5, 0.5) for each fund separately.26 The parameter η governs the strength of

the first stage27 and is set to η = 0.5.

25See, for example Zou and Hastie (2005), Zou and Zhang (2009).
26This allows to account for the possibility that funds can have different investment universes, and

for different investment universes, µ can be different.
27covariance between instrument zj and endogenous variable mej
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C Proofs

C.1 Proof of Lemma 1.

Start with the sample counterpart of the moment conditions of the nonlinear GMM

estimated on the augmented dataset:

Ê
[
zA,i,t,j

(
δ̂A,i,t,j exp(−xTA,i,t,jβi,t)− 1

)]
= 0 ∈ Rp×1 (36)

Note that ZA,i,t =


Zi,t

Ψi,t

−Ψi,t

 ∈ R(n+2p)×p, XA,i,t =


Xi,t

Ψi,t

−Ψi,t

 ∈ R(n+2p)×p,

and δA,i,t =


δ̂i,t

exp
(
Ψi,tβ

target
i,t

)
exp

(
−Ψi,tβ

target
i,t

)
 ∈ R(n+2p)×1, where n is the number of origi-

nal (true) observations of holdings and p is the number of asset characteristics in the

specification of the demand function. One can re-write the moment conditions (36) as:

Ê
[
zA,i,t,j

(
δA,i,t,j exp(−xTA,i,t,jβi,t)− 1

)]
=

1

n+ 2p

n+2p∑
j=1

[
zA,i,t,j

(
δA,i,t,j exp(−xTA,i,t,jβi,t)− 1

)]
=

n

n+ 2p
· 1
n

n∑
j=1

[
zt,j

(
δ̂i,t,j exp(−xTt,jβi,t)− 1

)]
+

1

n+ 2p
·

p∑
j=1

[
ψi,t,j

(
exp(ψT

i,t,jβ
target
i,t ) exp(−ψT

i,t,jβi,t)− 1
)]

+
1

n+ 2p
·

p∑
j=1

[
−ψi,t,j

(
exp(−ψT

i,t,jβ
target
i,t ) exp(ψT

i,t,jβi,t)− 1
)]

=
n

n+ 2p
· 1
n

n∑
j=1

[
zt,j

(
δ̂i,t,j exp(−xTt,jβi,t)− 1

)]
+

1

n+ 2p
·

p∑
j=1

[
ψi,t,j

(
exp(ψT

i,t,j(β
target
i,t − βi,t))− 1

)]
+

1

n+ 2p
·

p∑
j=1

[
−ψi,t,j

(
exp(−ψT

i,t,j(β
target
i,t − βi,t))− 1

)]
= 0 (37)
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Since Ψi,t = λsynthi,t · Ip, we have that ψi,t,j = λsynthi,t · ιj, where ιj ∈ Rp×1 is a vector such

that elements ιj,k = 1 if j = k, and ιj,k = 0 ∀j ̸= k. Then, the branch of the data

augmentation-driven penalty arising from the positive-valued synthetic assets Ψi,t can

be simplified as:

p∑
j=1

[
ψi,t,j

(
exp(ψT

i,t,j(β
target
i,t − βi,t))− 1

)]
=

p∑
j=1

λsynthi,t · ιj
(
exp(λsynthi,t · ιTj (β

target
i,t − βi,t))− 1

)
=

p∑
j=1

λsynthi,t · ιj
(
exp(λsynthi,t (βtarget

j,i,t − βj,i,t))− 1
)

=


λsynthi,t

(
exp(λsynthi,t (βtarget

1,i,t − β1,i,t))− 1
)

λsynthi,t

(
exp(λsynthi,t (βtarget

2,i,t − β2,i,t))− 1
)

...

λsynthi,t

(
exp(λsynthi,t (βtarget

p,i,t − βp,i,t))− 1
)


=λsynthi,t

(
exp(λsynthi,t (βtarget

i,t − βi,t))− 1p

)
(38)

where in the last row, exp() is applied to the vector element-wise, and 1p is a p × 1

vector of ones. Analogously, for the negative-valued synthetic assets −Ψi,t, one obtains:

p∑
j=1

[
−ψi,t,j

(
exp(−ψT

i,t,j(β
target
i,t − βi,t))− 1

)]
=− λsynthi,t

(
exp(−λsynthi,t (βtarget

i,t − βi,t))− 1p

)
=− λsynthi,t

(
exp(λsynthi,t (βi,t − βtarget

i,t ))− 1p

)
(39)

Then, by (37), (38), and (39):

Ê
[
zA,i,t,j

(
δA,i,t,j exp(−xTA,i,t,jβi,t)− 1

)]
=

n

n+ 2p
· 1
n

n∑
j=1

[
zt,j

(
δ̂i,t,j exp(−xTt,jβi,t)− 1

)]
+

1

n+ 2p
· λsynthi,t

(
exp(λsynthi,t (βtarget

i,t − βi,t))− 1p

)
− 1

n+ 2p
· λsynthi,t

(
exp(λsynthi,t (βi,t − βtarget

i,t ))− 1p

)
= 0
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By multiplying both sides by n+2p
n

, we have:

1

n

n∑
j=1

[
zt,j

(
δ̂i,t,j exp(−xTt,jβi,t)− 1

)]
+
1

n
· λsynthi,t

(
exp(λsynthi,t (βtarget

i,t − βi,t))− 1p

)
− 1

n
· λsynthi,t

(
exp(λsynthi,t (βi,t − βtarget

i,t ))− 1p

)
= 0 (40)

Note that in (40), the second term (third term) comes from the positive-valued

(negative-valued) synthetic assets. Hence, the penalty induced by positive-valued syn-

thetic assets can be expressed as:

πsynth
+

(
λsynthi,t , βi,t − βtarget

i,t

)
:=

1

n
· λsynthi,t

(
exp(λsynthi,t (βtarget

i,t − βi,t))− 1p

)
while the penalty induced by negative-valued synthetic assets:

πsynth
−

(
λsynthi,t , βi,t − βtarget

i,t

)
:=− 1

n
· λsynthi,t

(
exp(λsynthi,t (βi,t − βtarget

i,t ))− 1p

)

Which can be re-written as:

1

n

n∑
j=1

[
zt,j

(
δ̂i,t,j exp(−xTt,jβi,t)− 1

)]
+

1

n
· λsynthi,t

(
exp(λsynthi,t (βtarget

i,t − βi,t))− exp(λsynthi,t (βi,t − βtarget
i,t ))

)
︸ ︷︷ ︸

:=πsynth(λsynth, βi,t−βtarget
i,t )

= 0 (41)

Setting πsynth
(
λsynth, βi,t − βtarget

i,t

)
to the second term in (41) finalizes the proof of

Lemma 1. □

C.2 Proof of Lemma 2

Take from Lemma 1 the expressions for πsynth
+

(
λsynthi,t , βi,t − βtarget

i,t

)
, πsynth

−

(
λsynthi,t , βi,t − βtarget

i,t

)
,

and πsynth
(
λsynth, βi,t − βtarget

i,t

)
.

63



Then, ∀λsynthi,t > 0, one obtains for positive-valued synthetic assets:

lim
(βk,i,t−βtarget

k,i,t )→+∞

∥∥∥∥ 1nλsynthi,t

(
exp(−λsynthi,t (βk,i,t − βtarget

k,i,t ))− 1
)∥∥∥∥

2

=

∥∥∥∥− 1

n
λsynthi,t

∥∥∥∥
2

=
1

n
λsynthi,t

lim
(βtarget

k,i,t −βk,i,t)→+∞

∥∥∥∥ 1nλsynthi,t

(
exp(−λsynthi,t (βk,i,t − βtarget

k,i,t ))− 1
)∥∥∥∥

2

= ∥+∞∥2 = +∞

Analogously, for the branch of penalty with negative-valued synthetic assets:

lim
(βk,i,t−βtarget

k,i,t )→+∞

∥∥∥∥− 1

n
λsynthi,t

(
exp(λsynthi,t (βk,i,t − βtarget

k,i,t ))− 1
)∥∥∥∥

2

= ∥−∞∥2 = +∞

lim
(βtarget

k,i,t −βk,i,t)→+∞

∥∥∥∥− 1

n
λsynthi,t

(
exp(λsynthi,t (βk,i,t − βtarget

k,i,t ))− 1
)∥∥∥∥

2

=

∥∥∥∥ 1nλsynthi,t

∥∥∥∥
2

=
1

n
λsynthi,t

At the same time, the penalty based on both positive- and negative-valued syn-

thetic assets exhibits:

lim
(βk,i,t−βtarget

k,i,t )→+∞

∥∥∥∥ 1nλsynthi,t

(
exp(λsynthi,t (βtarget

k,i,t − βk,i,t))− exp(λsynthi,t (βk,i,t − βtarget
k,i,t ))

)∥∥∥∥
2

=

∥∥∥∥ 1nλsynthi,t (0−∞)

∥∥∥∥
2

= +∞

lim
(βtarget

k,i,t −βk,i,t)→+∞

∥∥∥∥ 1nλsynthi,t

(
exp(λsynthi,t (βtarget

k,i,t − βk,i,t))− exp(λsynthi,t (βk,i,t − βtarget
k,i,t ))

)∥∥∥∥
2

=

∥∥∥∥ 1nλsynthi,t (∞− 0)

∥∥∥∥
2

= +∞ (42)

□

C.3 Proof of Proposition 1

The first part of proposition stating:

Ê
[
zA,i,t,j

(
δ̂A,i,t,j exp(−xTA,i,t,jβi,t)− 1

)]
= 0

⇔

1

n

n∑
j=1

[
zi,t,j

(
δ̂i,t,j exp(−xTi,t,jβi,t)− 1

)]
+ πsynth

(
λsynthi,t , βi,t − βtarget

i,t

)
= 0
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with:

πsynth

(
λsynthi,t , βi,t − βtarget

i,t

)
=

1

n
· λsynthi,t

(
exp(λsynthi,t (βtarget

i,t − βi,t))− exp(λsynthi,t (βi,t − βtarget
i,t ))

)

stems directly from (41) in Lemma 1.

In the second part of proposition, there are 4 properties. I show them one-by-one

below.

1. From Lemma 1, if λsynthi,t = 0, then:

πsynth

(
λsynthi,t , βi,t − βtarget

i,t

)
=

1

n
· 0 · (1p − 1p) = 0 ∈ Rp×1

where 1p denotes p× 1 vector of ones.

2. Analogously, if for a given k ∈ {1, ..., p}, βk,i,t = βtarget
k,i,t , then one obtains that

penalty on k-th coefficient:

πsynth

(
λsynthi,t , βk,i,t − βtarget

k,i,t

)
=

1

n
· λsynthi,t · (1− 1) = 0 ∈ R1×1

3. Note that if βk,i,t ̸= βtarget
k,i,t , then either βk,i,t > βtarget

k,i,t or βk,i,t < βtarget
k,i,t . If

βk,i,t > βtarget
k,i,t , then as λsynthi,t → +∞:

(
exp(λsynthi,t (βtarget

k,i,t − βk,i,t))− exp(λsynthi,t (βk,i,t − βtarget
k,i,t ))

)
→ −∞

Analogously, if βk,i,t < βtarget
k,i,t , then as λsynthi,t → +∞:

(
exp(λsynthi,t (βtarget

k,i,t − βk,i,t))− exp(λsynthi,t (βk,i,t − βtarget
k,i,t ))

)
→ +∞

To complete the proof of the property, note that in both cases the norm will go to

infinity.

4. Note that |βk,i,t − βtarget
k,i,t | → ∞ can be decomposed into two cases:

1) βk,i,t − βtarget
k,i,t → +∞
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2) βtarget
k,i,t − βk,i,t → +∞

Then, the last property in Proposition 1 stems directly from (42) in Lemma 2.

□
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D Estimated Price Elasticities

Variable Nonlinear GMM (Group, LD) Pre-data augm. (Group, LD) Pre-data augm. (Group, HD)
Nonlinear GMM (Group, LD) 1.000 0.734 0.979
Pre-data augm. (Group, LD) 0.734 1.000 0.726
Pre-data augm. (Group, HD) 0.979 0.726 1.000

Table D.1: Correlation between estimated coefficients on market equity
Note: This table reports the correlation between the estimates of demand function coefficient on market
equity θ̂i,t in (1) obtained using the following three methods: 1) Nonlinear GMM of Koijen et al. (2023)
estimated at the group-level with low-dimensional set of stock characteristics; 2) pre-data augmentation
Debiased GMM under orthogonal moment conditions of Chernozhukov et al. (2018) estimated at the
group-level with low-dimensional set of stock characteristics; 3) pre-data augmentation Debiased GMM
estimated at the group-level with high-dimensional set of stock characteristics. For each of the three
methods, the groups are formed following the algorithm of Koijen et al. (2023): investors of the same
type (here, only one type: active mutual funds) are ranked by AUM and grouped so that each group has
at least 2000 observations (including zero-weight observations). For all three methods, the estimation
is performed at the quarterly frequency. The sample constitutes of active equity mutual funds in the
U.S. and spans from 1990 Q1 to 2022 Q4. Price elasticity can be computed as approximately 1 − θ̂i,t
(Koijen et al. (2023)).

Figure D.1 shows the time-series evolution of the cross-sectional averages (Panel

A) as well as percentiles of the cross-sectional distribution (Panel B) of the estimates for

the coefficient on market equity θ̂i,t from (1). Given that the price elasticity of investor

i’s demand at time t can be approximately computed as 1 − θ̂i,t, it easy to interpret

the magnitude of θ̂i,t. Consistent with findings in Koijen et al. (2023) for small active

investment advisors,28 the AUM-weighted cross-sectional averages of price elasticity are

in ballpark of 0.5. Cross-sectional distribution is also in a similar range to Koijen et al.

(2023), with 90th percentile having close to unit elasticity and 10th percentile having

price elasticity of around 0.3-0.4.29

Notably, all three methods produce similar estimates of price elasticity: The cor-

relation between the estimates obtained using nonlinear GMM of Koijen et al. (2023)

and the Debiased GMM under the (immunized to high-dimensionality) orthogonal mo-

ment conditions of Chernozhukov et al. (2018) is 0.73 (see Table D.1). The very high

correlation of 0.98 between the low-dimensional and high-dimensional Debiased GMM

estimates for the price elasticity suggests that controlling for the extended set of stock

characteristics does not have first order importance the estimates of price elasticity.

28Koijen et al. (2023) estimate demand system on 13F holdings data and do not separate mutual
funds from the overall group of investment advisors. Given that long-term investors (such as pension
funds and insurance companies) and hedge funds are excluded from the definition of investment advisors
in Koijen et al. (2023), active investment advisors can be viewed as a group of investors that largely
contains and is similar to active mutual funds in my sample.

29Note that since price elasticity is approximately 1 − θ̂i,t, the 10th percentile in terms of price

elasticity translates into 90th percentile in terms of estimated θ̂i,t.
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One can note that there is no major patterns in the evolution of the price elasticity

for active equity mutual funds over time, except for the latter part of the period (after

2015), where AUM-weighted average price elasticity remains consistently slightly below

0.5. Notably, the equally-weighted average and median price elasticities are higher than

the AUM-weighted average, suggesting that larger mutual funds tend to have lower

price elasticity. This is consistent with the economic rationale that larger mutual funds

pursue more passive investment strategies due to their larger diseconomies of scale.

D.1 First stage

To evaluate the relevance condition of the instrument for market equity meIV in (4), I

estimate the first stage where the (endogenous) market equity is regressed on the pro-

posed by Koijen and Yogo (2019), Koijen et al. (2023) instrument and other (exogenous)

stock characteristics:

mej,t = κg,tme
IV
i,t,j + ζTg,txj,t + ϵi,t,j , i ∈ g (43)

where meIVi,t,j is defined in (4). Notably, both the instrument and the first stage are

investor-specific for two reasons. First, the instrument meIVi,t,j is based on the investment

universes of all institutional investors, except investor i. Second, the set of stocks j

that comprises investor i’s investment universe in different for each investor i. For

the benchmark method of Koijen et al. (2023), I estimate the first stage (43) using

OLS without penalty on coefficients. To ensure the precision of estimation of the first

stage, I follow Koijen et al. (2023) and group mutual funds into groups g ∈ G so that

each group has at least 2000 observations (including zero-weight observations). For

the pre-data augmentation IV estimation, I employ Debiased GMM under orthogonal

moment conditions of Chernozhukov et al. (2018) estimated at the group-level. Note

that it is only the IV estimation that is always performed on 2000-observation grouped

sample: the demand function loadings βi,t are estimated fully . Since Debiased GMM

is robust to high-dimensionality and overfitting, I apply it to estimation of the first

stage for both low-dimensional and high-dimensional specifications of (43). Figure D.2

plots the distribution of the mutual fund-quarter t-statistics on the coefficient κi,t in
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(43).30 All three methods produce strong first stage, with practically all of the t-

statistics being above the critical value of 4.05 for rejecting the null of weak instruments

at 5% significance level (Stock and Yogo (2005)). These results support the relevance

of the instrument for market equity defined in (4) for estimation of demand function

specification in (1).

30Individual fund estimates κi,t are equal to the group level estimates κg,t to which fund i belongs.
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Panel A: Cross-sectional averages

Panel B: Cross-sectional percentiles of the distribution

Figure D.1: Time-series evolution of the estimated coefficients on market equity

Note: This figure reports the time-series evolution of the estimates of demand function coefficient
on market equity θ̂i,t in (1) obtained using the following three methods: 1) Nonlinear GMM of Koijen
et al. (2023) estimated at the group-level with low-dimensional set of stock characteristics; 2) pre-
data augmentation Debiased GMM under orthogonal moment conditions of Chernozhukov et al. (2018)
estimated at the group-level with low-dimensional set of stock characteristics; 3) pre-data augmentation
Debiased GMM estimated at the group-level with high-dimensional set of stock characteristics. For
each of the three methods, the groups are formed following the algorithm of Koijen et al. (2023):
investors of the same type (here, only one type: active mutual funds) are ranked by AUM and grouped
so that each group has at least 2000 observations (including zero-weight observations). For all three
methods, the estimation is performed at the quarterly frequency. The sample constitutes of active
equity mutual funds in the U.S. and spans from 1990 Q1 to 2022 Q4. Price elasticity can be computed
as approximately 1− θ̂i,t (Koijen et al. (2023)).
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Panel A: Nonlinear GMM (Group, Low-Dimensional)

Panel B: Pre-data augmentation (Group, Low-Dimensional)

Panel C: Pre-data augmentation (Group, High-Dimensional)

Figure D.2: IV for market equity: first stage

Note: The figure shows the histogram of t-statistics from the first stage of IV estimation of in-
vestors’ demand functions in (1) for each of the following three methods: 1) Nonlinear GMM of Koijen
et al. (2023) estimated at the group-level with low-dimensional set of stock characteristics; 2) pre-data
augmentation Debiased GMM under orthogonal moment conditions of Chernozhukov et al. (2018) es-
timated at the group-level with low-dimensional set of stock characteristics; 3) pre-data augmentation
Debiased GMM estimated at the group-level with high-dimensional set of stock characteristics. For
each of the three methods, the groups are formed following the algorithm of Koijen et al. (2023): in-
vestors of the same type (here, only one type: active mutual funds) are ranked by AUM and grouped
so that each group has at least 2000 observations (including zero-weight observations). The vertical
black dashed line denotes the critical value of 4.05 for rejecting the null of weak instruments at 5%
significance level (Stock and Yogo (2005)). For all three methods, the estimation is performed at the
quarterly frequency. The sample constitutes of active equity mutual funds in the U.S. and spans from
1990 Q1 to 2022 Q4.
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